
34

Scaling Up Symbolic Analysis by Removing Z-Equivalent States

YUEQI LI and S. C. CHEUNG, Hong Kong University of Science and Technology
XIANGYU ZHANG, Purdue University
YEPANG LIU, Hong Kong University of Science and Technology

Path explosion is a major issue in applying path-sensitive symbolic analysis to large programs. We ob-
serve that many symbolic states generated by the symbolic analysis of a procedure are indistinguishable
to its callers. It is, therefore, possible to keep only one state from each set of equivalent symbolic states
without affecting the analysis result. Based on this observation, we propose an equivalence relation called
z-equivalence, which is weaker than logical equivalence, to relate a large number of z-equivalent states. We
prove that z-equivalence is strong enough to guarantee that paths to be traversed by the symbolic analysis
of two z-equivalent states are identical, giving the same solutions to satisfiability and validity queries. We
propose a sound linear algorithm to detect z-equivalence. Our experiments show that the symbolic analy-
sis that leverages z-equivalence is able to achieve more than ten orders of magnitude reduction in terms of
search space. The reduction significantly alleviates the path explosion problem, enabling us to apply symbolic
analysis in large programs such as Hadoop and Linux Kernel.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification

General Terms: Algorithms, Verification, Performance, Experimentation

Additional Key Words and Phrases: Symbolic analysis, path explosion, state equivalence detection

ACM Reference Format:
Yueqi Li, S. C. Cheung, Xiangyu Zhang, and Yepang Liu. 2014. Scaling up symbolic analysis by removing
z-equivalent states. ACM Trans. Softw. Eng. Methodol. 23, 4, Article 34 (August 2014), 32 pages.
DOI: http://dx.doi.org/10.1145/2652484

1. INTRODUCTION

Symbolic analysis [King 1976; Clark 1976], such as that in KLEE [Cadar et al. 2008],
has a wide range of applications [Cadar et al. 2008; Chandra et al. 2009; Godefroid 2007;
Kothari et al. 2008; Person et al. 2008; Xie et al. 2003; Sen et al. 2005; Cui et al. 2013].
It executes a program using symbolic states and may proceed with both branches con-
strained by different symbolic path conditions, unlike concrete executions that proceed
with only one branch upon a conditional statement. In such cases, two subsequent sym-
bolic states are forked from the state before the conditional statement, which can be fur-
ther explored separately. Essentially, the analysis maintains one symbolic state along
each individual path, and users can query the computed symbolic states to check any
properties of interest. Compared with constraint-based static analyses that encode
abstract states along multiple paths to one logical formulae [Babic et al. 2007; Babic

This research is supported by the Research Grants Council under General Research Fund 611912 of Hong
Kong, as well as by the US National Science Foundation (NSF) under grants D917007, 1218993, and 1320326.
Any opinions, fundings, conclusions, or recommendations are solely those of the authors.
Y. Li, S. C. Cheung, and Y. Liu are currently affiliated with the Department of Computer Science and
Engineering at HKUST. X. Zhang is currently affiliated with the Department of Computer Science at Purdue
University.
Corresponding author: Yueqi Li; Hong Kong University of Science and Technology; email: yueqili@cse.ust.hk.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2014 ACM 1049-331X/2014/08-ART34 $15.00

DOI: http://dx.doi.org/10.1145/2652484

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

34:2 Y. Li et al.

Fig. 1. General symbolic analysis algorithm.

and Hu 2008; Dillig et al. 2008], the per-path encoding in symbolic analysis leads to
simpler formulae. This is friendlier to the underlying constraint solver and has better
precision in reasoning, especially in handling heap-related states. It is hence widely
used in test generation [Cadar et al. 2008; Godefroid 2007; Godefroid et al. 2005] and
evidence-based bug finding [Chandra et al. 2009; Chaudhuri and Foster 2010].

Figure 1 describes a general algorithm popularly adopted by existing symbolic
analysis tools [Cadar et al. 2008; Godefroid et al. 2005]. The algorithm uses a work
list w to maintain a set of states (paths) to explore. A symbolic state consists of a
program counter, path conditions, and a symbolic store. The state selector function
pick() determines the next symbolic state to explore. The branch selector function
follow() prunes infeasible paths and sometimes feasible paths that are irrelevant to the
properties of interest, to alleviate path explosion. As shown in Figure 1, the algorithm
first populates the work list with an initial state and then iteratively selects one state
to explore in its main loop. It also handles assignments by updating the corresponding
symbolic store. Upon reaching a conditional statement, it may fork into two states if
both branches are feasible.

Despite its precision, such path-sensitive symbolic analyses often face the scalability
issue due to the exponential growth of states [Kuznetsov et al. 2012]. Hence, even
though there is some success in using them to analyze small programs, it is still
difficult to apply them to large programs, such as Linux Kernel.

In this article, we address the problem by pruning equivalent states. We observe that
large real-world programs such as Tomcat, Hadoop, and Linux Kernel heavily depend
on various external entities, including the programs’ external libraries, runtime envi-
ronments, underlying computer networks, and peer processes running on the same com-
puter. These programs interact with their external entities via the corresponding APIs.

To handle these API functions, one approach is to manually construct models. This
approach entails substantial human effort and is even infeasible in many cases. For ex-
ample, the default models provided by KLEE are only sufficient for analyzing coreutil
programs. In order to analyze Linux Kernel, we have spent a few months modeling a
large set of necessary APIs (e.g., memory management APIs). However, there are still
5,000+ undocumented assembly functions. Yet, even when one can model those assem-
bly functions, it is still hard to model external inputs from unknown servers/devices
and external data sources. Analyzing large Java programs presents similar challenges,
and they usually rely heavily on Java’s standard libraries. Modeling about 5,000 native
APIs in JDK is difficult, and the APIs tend to evolve over time, making manual model-
ing more challenging. Besides, the source code of many libraries is often not available

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

Scaling Up Symbolic Analysis by Removing Z-Equivalent States 34:3

[Qi et al. 2012]. Even for symbolic execution engines that can handle binaries, such as
S2E [Chipounov et al. 2012], the implementations of library calls are difficult to handle
as they are often highly optimized, extensively using caching, hashing, and bit level
operations [Qi et al. 2012].

Hence, the approach used by many recent static analyses [Babic and Hu 2008; Babic
et al. 2007; Chandra et al. 2009; Chaudhuri and Foster 2010; Dillig et al. 2008; Kothari
et al. 2008] is to treat these difficult-to-model API functions as uninterpreted functions
that can bind to any possible values allowed by their types. However, in the context
of analyzing large programs, the sheer number of these functions is one of the main
causes of symbolic state explosion.

We observe that such treatment of API functions induces significant state redun-
dancy. When we symbolically analyze a procedure directly or transitively involving
uninterpreted functions, we observe that many symbolic states are equivalent in an-
swering path feasibility, property satisfiability, and validity queries because of the
flexible binding assumed by the uninterpreted functions. This observation motivates
us to define an equivalence relation called z-equivalence between a pair of symbolic
states. This relation is weaker than logical equivalence but strong enough to relate
two relatively indistinguishable symbolic states when they are indistinguishable with
respect to the continuation of the symbolic analysis.

We prove that the subsequent symbolic analysis of two z-equivalent states traverses
the same set of paths and gives the same answers to validity and satisfiability queries.
Utilizing the results, we only need to analyze one state in a set of z-equivalent states
and avoid redundant path exploration from these states. This reduction considerably
alleviates the path explosion problem, enabling us to perform symbolic analysis on large
programs such as the Hadoop and Linux Kernel. However, the problem of z-equivalence
detection is undecidable, and even a less-general form of it is exponential in complex-
ity, as discussed in Section 3.2. Detection of all z-equivalent states is intractable. We
therefore propose a linear-complexity algorithm for detecting an effective subset of
z-equivalent states. We evaluate the effectiveness by applying our technique to the
Ant, Lucene, Hadoop and Linux Kernel. By removing the redundant z-equivalent states
detected, we observe up to ten orders of magnitude reduction in terms of search space.

2. MOTIVATING EXAMPLE

We use a motivating example in Figure 2 to illustrate our idea. We consider readUserIn-
put(), cin.hasNext(), cin.nextInt(), s.hasNext(), and s.nextInt() in readData() as external
APIs. These APIs are highlighted with “∗” in Figure 2. We treat them as uninterpreted
functions such that their return values can bind to any value confined by their types.

If the symbolic analysis algorithm expands the loops in the procedure readData()
twice, it explores a total of six paths in readData(). When the algorithm finishes ana-
lyzing readData(), each of the six paths leads to a symbolic state, which is characterized
by a constraint constructed by the conjunction of the associated path conditions and
readData()’s postcondition. In the following constraints, xn, wn, yn, and zn denote the
return values from the nth invocations of cin.hasNext(), s.hasNext(), cin.nextInt(), and
s.nextInt() made in a path, respectively. The constraints are presented as follows.

C1: ′F ′ = type ∧ ¬x1 ∧ RET = 0,

C2: ′F ′ = type ∧ x1 ∧ ¬x2 ∧ RET = y1,

C3: ′F ′ = type ∧ x1 ∧ x2 ∧ ¬x3 ∧ RET = y1 + y2,

C4: ′F ′ �= type ∧ ¬w1 ∧ RET = 0,

C5: ′F ′ �= type ∧ w1 ∧ ¬w2 ∧ RET = z1,

C6: ′F ′ �= type ∧ w1 ∧ w2 ∧ ¬w3 ∧ RET = z1 + z2.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

34:4 Y. Li et al.

Fig. 2. Motivating example.

C1–C3 encode the paths corresponding to a true branch of line 3, with a different
number of iterations of the inside loop. Note that the constraint variables are local to
a constraint. Therefore, x1 may bind to different values in C2 and C3. A conventional
symbolic execution engine would consider these six constraints to be different and
would analyze each of them separately. In fact, this is unnecessary if we take advantage
of the uninterpreted functions in two ways. First, some clauses in these constraints
do not affect the symbolic analysis of the code outside readData(). For example, the
conjunction w1 ∧ w2 ∧ ¬w3 in the constraint C6 does not affect the analysis outside the
scope of readData(). This is because the conjunction does not constrain any variables
outside the scope of readData() directly, or indirectly, by constraining other correlated
variables. Second, some expressions have equivalent effects. For example, the clauses
RET = y1 and RET = y1 + y2 have equivalent effects on the subsequent analysis
after a symbolic execution engine finishes analyzing readData(). The reason is that we
can always choose some value for y1 in the constraint C2 to make y1 equal to y1’ + y2
in the constraint C3. Here, we rename variable y1 to y1’ in C3 to resolve the name
conflict. Similarly, we can also choose values for y1’ and y2 to make y1’ + y2 in C3 equal
to y1 in C2. From these observations, we consider C2 and C3 equivalent. Similarly,
C5 and C6 are equivalent. Thus, upon the return from readData() in Line 20, we only
need to continue analyzing paths associated with C1, C2, C4, and C5. With these four
constraints, we have eight paths to analyze in readAndNoti() and two of them are
infeasible. The eight paths are characterized by the following constraints, in which
RET 2 denotes the return from readAndNoti().

C7: ′F ′ = type ∧ ¬x1 ∧ RET = 0 ∧ RET = RET 2 ∧ RET 2 < 0,

C8: ′F ′ = type ∧ x1 ∧ ¬x2 ∧ RET = y1 ∧ RET = RET 2 ∧ RET 2 < 0,

C9: ′F ′ = type ∧ ¬x1 ∧ RET = 0 ∧ RET = RET 2 ∧ RET 2 ≥ 0,

C10: ′F ′ = type ∧ x1 ∧ ¬x2 ∧ RET = y1 ∧ RET = RET 2 ∧ RET 2 ≥ 0,

C11: ′F ′ �= type ∧ ¬w1 ∧ RET = 0 ∧ RET = RET 2 ∧ RET 2 < 0,

C12: ′F ′ �= type ∧ w1 ∧ ¬w2 ∧ RET = z1 ∧ RET = RET 2 ∧ RET 2 < 0,

C13: ′F ′ �= type ∧ ¬w1 ∧ RET = 0 ∧ RET = RET 2 ∧ RET 2 ≥ 0,

C14: ′F ′ �= type ∧ w1 ∧ ¬w2 ∧ RET = z1 ∧ RET = RET 2 ∧ RET 2 ≥ 0.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

Scaling Up Symbolic Analysis by Removing Z-Equivalent States 34:5

Constraints C7 and C11 are not satisfiable. We can again conduct a similar analysis
for readAndNoti() to identify equivalent constraints. Observe that the variable type is
not used in the caller of readAndNoti(). Nor does it impose any constraints on variables
in the scope of readAndNoti()’s caller. Thus, its value is irrelevant to the symbolic
analysis of the caller of readAndNoti(). If we ignore clauses ‘F’ = type and ‘F’ �= type,
we can consider C8 and C12, C9 and C13, and C10 and C14 equivalent. As a result, it
suffices to keep the three paths corresponding to C8, C9, and C10 for further analysis.
Note that this step of reduction is dependent on the previous step because variable
s in readAndNoti() has different symbolic expressions and can propagate out of the
function body. If we only ignore ‘F’ = type and ‘F’ �= type as the existing approaches
[Boonstoppel et al. 2008] do, the resulting symbolic states are still different.

In this motivating example, we have intuitively shown that uninterpreted functions
(e.g., w1) and variables dependent on these functions (e.g., type) can induce equivalent
symbolic states. The identification of these states can significantly reduce the number
of paths to explore. Note that such redundancy is present across multiple queries to the
solver. It is hence difficult for the solver to leverage its internal optimization mechanism
to remove the redundancy. The complex heap behavior of large programs also makes
merging multiple paths to a single formula (hoping the redundancy can be suppressed
by merging) an impractical design choice. It was observed that such formulae encoding
many paths of the entire body of a large program cannot be solved by the underlying
solvers [Cadar et al. 2008]. That is also the reason why many symbolic analysis engines
that aim to have precise simulation of heap behavior choose to explore individual paths.
More discussion can be found in Section 5.5.

In fact, as an on-the-fly constraint optimization method external to the solver, our
technique is orthogonal to many existing techniques that optimize path exploration
and constraint merging. For example, we can still deploy efficient data structures with
copy-on-write techniques to optimize data storage [Cadar et al. 2008], and perform
constraint merging [Kuznetsov et al. 2012] to combine constraints (after redundancy
removal) from multiple states to one.

As shown in the preceding example, equivalent state detection can be made in three
steps. The first step (in Section 3.1) is to encode symbolic states in terms of constraint
expressions. The second step (in Section 3.3) is to identify those expressions in con-
straints that can flexibly bind to arbitrary values, for example, the expressions y1 and
y1 + y2 in the preceding example can bind to any integer values. We illustrate the
challenges of decoupling variables when they can constrain each other in different con-
straint expressions. For instance, y1 can be constrained if there is another constraint
y1 > 0 which prevents y1 from binding to negative values. A sound algorithm is devised
to accomplish such decoupling efficiently. The third step (in Section 3.4) is to unify the
expressions as much as possible, for example, y1 and y1 + y2 can be unified.

3. APPROACH

In this section, we first introduce a symbolic analysis algorithm augmented with equiv-
alent state detection. Then we define z-equivalence and explain the detection of z-
equivalent states.

3.1. Symbolic Analysis

Like the symbolic analysis engine in KLEE [Cadar et al. 2008] (as shown in Figure 1),
our analysis maintains a symbolic state for individual paths. The improvement lies in
the fact that we leverage symbolic variables to achieve state reduction at function call
boundaries.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

34:6 Y. Li et al.

Fig. 3. Definitions related to the semantic rules.

Let us facilitate our discussion using a small imperative language, which models
integer and Boolean types of constants, assignment, conditional statements, func-
tion calls, and returns. Our implementation supports complex language features, like
heap modifications, pointers, and arrays. External functions are explicitly modeled by
unknown().

Program p ::= m∗

Function m::= f (x){s}
Constant c ::= . . . | − 1|0|1| . . . |true|false
Expression e ::= x|c|e1op e2

Statement s ::= x = e|x = f (e)|x = unknown()|s1; s2|
if (e) then s1 else s2|retf x

Operators op ::= +| − | . . . | > | ≥ | = | �= | ∧ | ∨ | . . .
Figure 3 presents the definitions related to the semantic rules. In particular, the

symbolic store σ maps a variable to a symbolic value; the work list ω contains a
set of triples that encodes the symbolic states to explore. Each triple contains the
next statement to explore, the path constraint, and the symbolic store for that path.
Upon a function call from A() to B(), our analysis proceeds to analyze the paths inside
B(), computing the various possible symbolic return values and pruning redundant
constraints (or states) before it continues to execute the statements after the call in
A(). Hence, we need to use a stack to retain the caller’s state when analyzing the callee.
In particular, � represents a stack of work lists, each of which corresponds to one level
of function invocation. This is similar to the call stack in a concrete execution. A return
constraint Y is a set of constraints generated for the return value of a function, encoding
the symbolic values yielded along different paths in the function. � represents a stack
of return constraints for nesting functions.

The semantic rules are presented in Figure 4. We have three sets of rules. The
expression rules evaluate an expression to a symbolic value. Note that it evaluates a
variable directly to its symbolic form instead of acquiring its value from the symbolic
store (Rule E-VAR in Figure 4).

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

Scaling Up Symbolic Analysis by Removing Z-Equivalent States 34:7

Fig. 4. Semantic rules.

Statement rules evaluate a symbolic state 〈s, ρ, σ 〉 to a set of symbolic states repre-
senting its possible continuations. The assignment evaluation is standard. Rule (S-IF-
T) states if the path feasibility test determines that only the true branch is taken, the
continuation is the statement in the true branch with the path condition updated. Note
that we use a flattening operator ↓ to flatten the mapping in the symbolic store to the
corresponding constraints for feasibility testing. We omit the rule for the case when
only the false branch is taken. Rule (S-IF-BOTH) evaluates a conditional statement to
two continuations when both branches are feasible. Both of them will be added to the
work list and evaluated later independently. Rule (S-UNINPRT) specifies that when an
external function is encountered, we introduce a fresh symbolic variable to represent
its return value. Note that the variable is not constrained.

The global rules describe top-level evaluation, which is represented as a term rewrit-
ing process. It starts with the work list stack � containing only the work list for the
main function. The list has the initial symbolic state denoting the entry of the main
function. The return constraint stack � is initially empty. The process terminates when
�’s top-level work list becomes empty, meaning all symbolic states have been evaluated.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

34:8 Y. Li et al.

Rule (G-STMT) describes that the work list selection function chooses a non-call/-return
statement to evaluate. The corresponding symbolic state is hence replaced by its result-
ing continuation state(s). Rule (G-CALL) specifies that if the selected statement is a
function invocation, a new work list is pushed to the stack, representing the evaluation
context of the callee. The new work list has one single statement denoting the entry of
the callee. The new symbolic state is inherited from the caller and updated with the
argument mapping. This allows us to test path feasibility inside the callee using infor-
mation from the caller. Rule (G-RET) specifies that when a return statement is selected
for evaluation, the resulting constraint of the return value is tested against the other
constraints collected earlier for redundancy. Note that we introduce a special symbolic
variable rtf to denote the return value. The symbolic state of the return statement is
removed from the work list, meaning that the evaluation of an intraprocedural path
has ended. After all paths within the current function have been evaluated, the work
list on top of the stack becomes empty. Rule (G-POSTCALL) specifies when this hap-
pens, the constraints of the return value of the current function (in γ) are propagated to
its caller. In particular, we use a propagation operator �� f

x to update the path condition
with the constraints we have collected for the return value and insert a mapping from
the variable x to rtf . Note that multiple continuation symbolic states may be yielded
by the operation, corresponding to the different paths inside the callee. When the two
stacks are popped, we resume evaluating the caller.

Our search strategy explores the paths within a callee upon a method invocation
before exploring the paths of the caller. At the call graph level, our search strategy is a
depth-first search. Within a function call, the random search strategy is used. Random
strategy randomly selects states from a worklist to explore [Cadar et al. 2008]. For
example, if function main() calls a(), and a() calls b(), our strategy would randomly
explore the paths within b() by randomly selecting states from the worklist. After all
paths1 within b() are explored, the algorithm proceeds to explore the continuation of
the paths in a() and the remaining paths in a(). We do not use a global random strategy,
which randomly explores all paths. The paths within the same function call share the
same pre-condition, that is, path conditions, call stack, parameters, and heap. As such,
we can make state comparison based only on the changes made within callees. This
reduces the overhead to compare the entire symbolic state.

3.2. Z-equivalence

Here, let us explain the equivalence test, that is, eq test(γ, B, ρ) in Rule (G-RET) in
Figure 4. When our symbolic analysis finishes analyzing a path within a function
(i.e., upon reaching the return statement), it calls eq test(γ, B, ρ) to determine if the
constraint ρ computed along the path is redundant by comparing it to the previously
computed constraints in γ . We classify constraint variables into two categories: observ-
able and unobservable. Given a function, observable variables denote those accessible
to the statements outside the function. In Rule (G-RET), they are denoted by set B,
including the parameter and the return value. In practice, global variables and data
structure fields that are reachable through pointer parameters are also considered
observable. Unobservable variables are the fresh symbolic variables introduced when
analyzing the function (and its callees). They include those representing external APIs
and local variables. Our basic idea is to leverage the flexibility of their binding to de-
termine equivalence. Note that we cannot simply ignore unobservable variables and
determine z-equivalence, because observable variables may be constrained through
unobservable variables.

1If there are loops in a function, there can be infinite number of paths in the function. In this case, we set a
threshold based on available memory.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

Scaling Up Symbolic Analysis by Removing Z-Equivalent States 34:9

Definition 1. Two constraints φ and ψ are z-equivalent (denoted as φ ψ) if
∀ �β∀�α1∃�α2(φ = ψ) and ∀ �β∀�α2∃�α1(φ = ψ), where �β denotes the vector of the union of
observable variables in φ and ψ ; −→α1 and −→α2 denote the vector of unobservable variables
in φ and ψ , respectively; and the variables in −→α1 and −→α2 denoting the same program
variable are renamed to ensure independence.

A symbolic state is characterized by a state constraint, which involves observable
and unobservable variables. Two symbolic states are said to be z-equivalent if their
characterizing constraints are z-equivalent. Intuitively, z-equivalence relates indistin-
guishable states (or constraints) by skipping comparisons of certain sub-expressions
that involve unobservable variables. Note that z-equivalent constraints φ and ψ may
involve two different sets of observable variables. Vector �β is the union of these two
sets. There are no common variables between unobservable variable vectors �α1 and �α2.
In the example in Figure 2, constraints C2 and C3 are z-equivalent, where type and
RET are observable variables and xi and yj are unobservable variables. The following
theorem shows that z-equivalence observes the three properties of equivalence relation.

THEOREM 1. The binary relation z-equivalence satisfies the following.

(1) ∀φ(φ φ) (reflexive).
(2) ∀φ∀ψ((φ ψ) → (ψ φ)) (symmetric).
(3) ∀φ∀ψ∀ϕ((φ ψ) ∧ (ψ δ) → (φ δ)) (transitive).

φ, ψ , and ϕ are constraints.

These three properties avoid pairwise z-equivalence comparison among constraints.
For example, we can conclude that a constraint is z-equivalent to any members of a z-
equivalence set if it is z-equivalent to a member of the set. Please refer to our technical
report [Li et al. 2013] for the theorems’ proofs in this article.

THEOREM 2. (φ ≡ ψ) |= (φ ψ), where φ and ψ are predicate formulae and ≡ denotes
logical equivalence.

Theorem 2 states that logical equivalence is not weaker than z-equivalence. Note that
z-equivalence does not necessarily imply logical equivalence. For example, formulae
a1 > 1 and a2 = 1 are z-equivalent, where a1 and a2 are unobservable variables.
This is because whether a1 > 1 is true or false, the second formula a2 = 1 can also
be true or false accordingly by choosing appropriate values for a2. Similarly, formula
a1 > 1 can bind to true or false regardless of the outcome of a2 = 1. However, they
are not logically equivalent. Since z-equivalence is weaker than logical equivalence, we
establish its soundness and completeness regarding satisfiability and validity queries
by Theorems 3 to 6. A satisfiability query checks if a given property can ever be true.
A validity query checks if a property always holds.

THEOREM 3. (φ ψ) ∧ SAT (ψ ∧ ϕ) |= SAT (φ ∧ ϕ).

THEOREM 4. (φ ψ) ∧ ¬SAT (ψ ∧ ϕ) |= ¬SAT (φ ∧ ϕ).

SAT(x) denotes that x is satisfiable. The sets of unobservable variables in φ and ψ
cannot be referenced in ϕ.

Theorems 3 and 4 state the soundness and completeness of z-equivalence for
satisfiability queries. We use ∧ϕ in the theorems to denote the constraint generated by
analyzing a subsequent path (from φ or ψ). We can bind ϕ to true if we do not further
analyze from states φ or ψ . Theorem 3 asserts that if a state (ψ ∧ ϕ) originating from
state ψ is feasible, then the state (φ ∧ ϕ) originating from ψ ’s z-equivalent state φ
is also feasible. Theorem 4 asserts infeasibility. The two theorems hence assert that

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

34:10 Y. Li et al.

the symbolic analysis explores the same set of paths (or states) starting from the
z-equivalent states φ and ψ .2

THEOREM 5. If φ ∧ ϕ ||− λ and φ ψ , then ψ ∧ ϕ ||− λ.

THEOREM 6. If φ ∧ ϕ /||= λ and φ ψ, then ψ ∧ ϕ /||= λ.

Theorems 5 and 6 assert the soundness and completeness for validity queries.
The preceding discussion shows that the proposed z-equivalence has two nice fea-

tures. First, it can relate more equivalent states by being weaker than logical equiv-
alence. Second, it is strong enough to guarantee the soundness and completeness of
path reduction based on z-equivalence. However, deciding z-equivalence is in gen-
eral undecidable due to the undecidability of first order logic [Huth and Ryan 2004].
Z-equivalence, unlike the format ∃v1∃v2 . . . ∃vnφ accepted by constraint solvers, involves
both universal and existential quantifiers. It is also intractable for first-order logic the-
orem provers because the computation involves infinite domains, for example, integer
domains. Even a formula with only boolean operations would require an exponen-
tial algorithm for solving [Reiter and Clayton 2013]. These two factors make deciding
z-equivalence difficult.

The key contribution of our work is a linear algorithm that can identify a subset of z-
equivalence states effectively. In the remainder of the section, we discuss the algorithm.

3.3. Identifying Unconstrained Expressions

This section introduces the technique we use to identify a set of expressions in a con-
straint such that the outcomes of these expressions can be arbitrary values confined by
their data types, namely, integer or Boolean. We call such a set of expressions uncon-
strained. For example, we consider a singleton expression set {a = b} unconstrained
when variable a represents an unobservable variable, because the Boolean outcome of
the expression a = b can be true or false.

Before presenting our algorithm for unconstrained expression identification, let us
illustrate its underlying intuition using three examples. We use β to denote an observ-
able variable and α to denote an unobservable variable representing an un-interpreted
function.

Example 1. β1 = α + β2.

The expression in Example 1 is unconstrained because α is unconstrained and we
can always choose a value of α to make the constraint whether satisfied or not.

Example 2. (β1 = α1 + α2) ∧ (β2 = α1 + α2).

The addition expression in Example 2 is not unconstrained. Although both clauses
in the constraint comprise the operator + and they look similar to the one in Example
1, we cannot find appropriate values for α1 and α2 to satisfy the constraint when
β1 �= β2, even though α1 and α2 are unobservable. This is largely because α1 and α2 are
shared by the two clauses and they constrain each other. Thus, our algorithm needs to
consider how variables constrain each other. A naı̈ve approach could easily get unsound
conclusions in cases similar to Example 2.

Example 3. (α1 = β2) ∧ (β1 = α1 + α2).

We can deduce in two steps that the additional expression in Example 3 is uncon-
strained. First, we can always choose a value for α1 to control any possible outcome
of (α1 = β2). After that, we can always choose a value for α2 to control any possible

2Assume that symbolic analysis uses the same path exploration strategy for both symbolic states.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

Scaling Up Symbolic Analysis by Removing Z-Equivalent States 34:11

Fig. 5. Abstract syntax tree of the expression in Example 3.

outcome of (β1 = α1 +α2). As we can see, a good algorithm should avoid getting unsound
conclusions in cases like Example 2 and be precise enough to identify unconstrained
expressions as in Example 3.

In light of the three examples, let us examine the ‘unconstrained’ notion over a set of
expressions with unobservable variables that may occur in more than one expression.
Our examination focuses mainly on unobservable variables because observable vari-
ables and constants are constrained by nature. Suppose S is a set of non-overlapping
expressions in a constraint under analysis (i.e., disjoint subtrees in the abstract syntax
tree of a constraint). We call the unobservable variables that occur only in S the local
unobservable variables of S, and the other unobservable variables, which occur in S as
well as expressions outside S, the non-local unobservable variables of S. The bindings
of local unobservable variables do not affect expressions outside S. An important crite-
rion for S to be unconstrained is whether the outcomes of its expressions in S assume
any outcomes without affecting expressions outside.

Definition 2 (Unconstrained Expression Set). Suppose S is a set of expressions
{s1, . . . , sn}, which consists of a set of observable variables, a set of local unobserv-
able variables, and a set of non-local unobservable variables. Let

−→
β , −→αl , and −→αn be

a binding of these three sets of variables, respectively. Let
−→
δ be a vector of values

<δ1, . . . , δn>, where δi is an arbitrary value allowed by type si. A set of expressions
S = {s1, . . . , sn} in a constraint is unconstrained if ∀−→

δ ∀−→
β ∀−→αn∃−→αl (−→vs = −→

δ), where −→vs is
a vector of values given by s1, . . . , sn.

Essentially, the definition means that after binding observable and non-local unob-
servable variables to some specific values, if we can still ensure that all expressions in
S can have arbitrary values by having some solution to local unobservable variables,
then S is unconstrained. The establishment of such an unconstrained set of expres-
sions is usually supported by an order of valuations of the Abstract Syntax Tree (AST)
nodes that represent these expressions. Here we call assigning a value to an AST node
the valuation of the node. Constraint solving is thus essentially a process of finding
a consistent way of valuating all nodes inside an AST [Huth and Ryan 2004]. For
illustration, we use the following concrete example.

Take the singleton expression set {(α1 = β2) ∧ (β1 = α1 + α2)} in Example 3 for
instance. In the expression, β1 and β2 are observable variables, while α1 and α2 are
unobservable variables. Figure 5 presents the AST of the expression. We show that we
can always follow the valuation sequence <w = x ∧ z; x = (α1 = β2); z = (β1 = y); y =
α1 + α2> to find an appropriate binding of α1 and α2 to satisfy any valuation of w after
β1 and β2 are bound. For example, suppose β1 and β2 are set to 1 and 2, respectively.
Assume that we want w to be false. According to the previously mentioned valuation
sequence, we can first bind x and z in w = x ∧ z to f alse and true, respectively. Then we

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

34:12 Y. Li et al.

can bind α1 to 0, y to 2, and finally α2 to 2. Similarly, if we want w to be true, we can also
find such a valuation order. As a result, we can conclude that this singleton expression
set is unconstrained. We note that not all expressions in a constraint necessarily form
an unconstrained set (e.g., the two clauses in Example 2).

Before discussing our identification algorithm, we introduce three types of operators
that are important for the algorithm.

Definition 3. A Type I operator ⊗ is a commutative operator that satisfies ∀x∀a∃b
(x = (a ⊗ b)) and ∀x∀b∃a(x = (a ⊗ b)), where the values of x, a and b are only bounded
by their types.

In this work, we consider =, �=,+,− as Type I operators. Besides binary operators,
the unary operator can also be modeled as 0-a and considered as a Type I operator.
The unary operation ¬x can be converted to false = x so that ¬ can be considered as
a Type I operator.

Definition 4. A Type II operator ⊗ is a commutative operator that satisfies
∀x∃a∃b(x = (a ⊗ b)), where the values of x, a and b are bounded by their types.

In this work, we consider >,<,≤,≥,×,÷,∨, and ∧ as Type II operators. We also
consider all bit operators as Type II operators, where unary bitwise complement ∼x can
be modeled as −1 xor x. We consider operator ≥ as Type II instead of Type I because we
cannot make α ≥ β false when β binds to the minimal machine representable integer,
even if α is a free variable. The same applies to >,<, and ≤.

Definition 5. An operator, which is neither Type I nor Type II, is a Type III operator.

Type III operators induce expressions that are not flexible, that is, we may not be able
to make such an expression have a desired value. Type III operators include arithmetic
mod and operators for heap object manipulation. We classify the mod operator as
Type III because the outcome of a mod operation cannot be the largest representable
integer.

We propose six rules in Figure 6 to transform the AST of a given constraint into a
tree annotated by tags and arcs. The set of unconstrained expressions can be derived
from the tags. The arcs compose a partial valuation order that serves as the witness.
There are three types of annotations for an AST node, namely, ‘Flexible (F)’, ‘In-flexible
(I)’, and ‘Undecided (?)’. An ‘F’-annotated node u means that u can flexibly bind to any
value. Before applying the six rules, nodes that represent operators or occurrences of
unobservable constraint variables are initialized with ‘?’ and the remaining nodes with
‘I’. The ‘I’-annotated nodes are either occurrences of observable constraint variables or
constants, which cannot be bound to arbitrary values. The rules explore the structure
of an AST and iteratively transform some ‘?’-annotated nodes to ‘F’/‘I’ nodes. An arc
from node u to v indicates that u should be valuated before v.

Rule 0 is the preprocessing rule. A parent node is annotated with ‘I’ if both children
have been annotated as ‘I’, as its value must not be flexible. It is applied iteratively
before the other rules until it cannot be applied further. This is to identify all the nodes
that are absolutely not flexible.

Rule 1 is for initialization. It annotates the nodes that represent unobservable vari-
ables with a single occurrence in the AST by ‘F’. These variables must be local un-
observable variables of their enclosing expressions. They can be bound to arbitrary
values. Rules 2–5 are applied iteratively until they cannot be applied further. In each
step, one node changes from ‘?’ to ‘F’.

Node w in Rule 2 denotes a Type I operator with two operands s and c, that is,
w = c ⊗ s, where nodes c, s, and w denote the outcomes of the expressions whose ASTs
are rooted at c, s, and w, respectively. Rule 2 reflects the following situation: if w is a

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

Scaling Up Symbolic Analysis by Removing Z-Equivalent States 34:13

Fig. 6. Partial-order construction rules.

Type I operator and the operand c can be bound to an arbitrary value, then w can also
be bound to an arbitrary value. Rule 2 also identifies a partial order that requires w
and s to be valuated before c. It is justified by the fact that a binding of c always exists
for any specific bindings of w and s according to the definition of Type I operators.

Similarly, Rule 3 includes w in the valuation sequence and gives a partial order by
which we can always bind c and s to some values after w is valuated, where w = c ⊗ s
and ⊗ is a Type II operator. This can be justified in a similar way to that of Rule 2.

Rule 4 states that if we have identified that the parent node c can be bound to an
arbitrary value (through previous rule applications), the child node n is flexible if it
has not been annotated, regardless of the type of the operator ⊗. This is because the
flexibility of c allows us to bind it to any value even after we have bound n. The arc
indicates such a valuation order. Rule 5 is applied to a scenario where an unobservable
variable has k occurrences in the entire AST, and (k − 1) of the occurrences have been
annotated by ‘F’, while the last occurrence is annotated by ‘?’. The nodes n1, n2, . . . , nk
in Rule 5 refer to the k occurrences of the unobservable variable n. The arcs in Rule 5
indicate the partial order to valuate nk before n1, . . . , nk−1. In such scenarios, Rule 5 will
annotate the node nk by ‘F’. After that, we can further apply Rules 2 and 3 to annotate
more nodes that are ancestors of nk.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

34:14 Y. Li et al.

A fixed point is reached when further exercise of Rules 2–5 do not result in additional
‘F’-annotated nodes. To study the properties of the annotated AST at a fixed point, let
us first introduce the concept of Flexible-Abstract-Syntax-subTree (FAST).

Definition 6 (Flexible-Abstract-Syntax-subTree). Suppose TS is the set of all anno-
tated ASTs rooted with an ‘F’-annotated node when a fixed point is reached. An AST
in TS is a Flexible-Abstract-Syntax-subTree (FAST) if it is not a proper subtree of any
ASTs in TS.

For example, the entire annotated AST in Figure 5 is an FAST. However, the AST
rooted at node z is not an FAST, because z has an ‘F’-annotated ancestor node w.
Theorem 7 asserts that the set of expressions represented by the FASTs at the fixed
point of AST transformation is unconstrained. Intuitively, the outcome of an expression
corresponding to a FAST can be flexibly bound to any value.

LEMMA 1. A valuation sequence that conforms to the partial order constructed by the
rules in Figure 6 always exist in the set of FASTs.

This can be proved by showing that our partial order construction rules never in-
troduce cycles into the graphs that comprise the AST nodes and the generated arcs at
fixed points (i.e., the graph is a directed acyclic graph). Please refer to our technical
report [Li et al. 2013] for the proof.

THEOREM 7. If S = {s1, . . . , sn} is the set of FASTs in an annotated AST when a
fixed point has been reached, the set of expressions represented by these FASTs is
unconstrained.

We can show that we can always construct a valuation sequence from our partial
orders to help establish the fact that the concerned expression set is unconstrained.

THEOREM 8. If Sp and Sq are the sets of FASTs obtained at the two fixed points
reached by applying the rules to an AST in two different orders p and q, Sp equals Sq.

The theorem dictates that the order of the rules that are applied is irrelevant. We can
prove Theorem 8 by modeling the AST transformation process using Petri nets [Murata
1989]. We show that the applications of our rules can be simulated using transition
firings in Petri Nets. The problem of deciding whether an AST node is ‘F’-annotated
at a fixed point can be reduced to the classic reachability problem in Petri nets. Then
we can prove that the sets of FASTs obtained at different fixed points are identical
and independent of rule application orders by showing that the behavioral property
“reachability” of Petri nets is not affected by the transition firing orders [Li et al. 2013].

The six rules in Figure 6 are implemented by an algorithm that uses a worklist
to track the process of annotating nodes. The worklist is initialized by Rule 1. The
algorithm removes one node from the worklist each time. Any rule(s) that can be
applied to the node are applied. A node is added to the worklist if it changes from ‘?’ to
‘F’, which may lead to further rule application. We illustrate the execution of such an
algorithm in Figure 7. Tree T1 in Figure 7 represents the AST of Example 3 with initial
annotations, that is, the ‘I’ and ‘?’ annotations. Since the unobservable variable α2 has
only one occurrence in the entire constraint, we add it to the worklist and annotate it
by ‘F’ according to Rule 1. Tree T2 gives the result after this step. Note that we use α1
and α1’ in Figure 7 to denote two different occurrences of the same variable α1 in the
example constraint. In T3, the algorithm removes α2 from the worklist, annotates node
y by ‘F’ (Rule 2), and then adds y to the worklist. In T4, the algorithm removes node y
from worklist and annotates nodes z, α1’, and α1 by ‘F’ using Rule 1, Rule 4, and Rule 5,
respectively. Nodes α1 and z are then added to worklist. In T5, the algorithm removes
α1 from the worklist, annotates x by ‘F’ (Rule 1), and adds x to the worklist. In T6, the

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

Scaling Up Symbolic Analysis by Removing Z-Equivalent States 34:15

Fig. 7. Stepwise illustration of Example 3.

Table I. Unification Rules

Case Unification substitution Explanation
1 βi = βi {} Two identical observable variables can be unified
2 αi = aj {ai → aj} Two unobservable variables can be unified by

renaming.
3 FASTi = FASTj {} Two FASTs can be unified.
4 ⊗i = ⊗i {} Identical operators can be unified.
5 ci = ci {} Identical constants can be unified.

algorithm annotates w by ‘F’ using Rule 2. Now we have established that the singleton
set of expressions {(α1 = β2) ∧ (β1 = α1 + α2)} is unconstrained. The valuation sequence
is also illustrated in Figure 7.

Complexity of the Annotation Algorithm. Before an operator node is added to the
worklist, the algorithm always checks if this node has a ‘?’ annotation and then an-
notates it with ‘F’. Therefore, both leaf nodes and operator nodes can be added to the
worklist at most once. It takes constant time to process the removal of a node from the
worklist. Therefore, the complexity is linear to the size of AST.

3.4. Equivalent Symbolic State Detection

To determine z-equivalence of two symbolic states, we apply our algorithm to identify
unconstrained sets of expressions in the ASTs of the two constraints that encode the
two symbolic states. We adapt the unification algorithm of first-order logic [Russell
and Norvig 2003] to check if two constraints are unifiable using the rules in Table I.
The unification algorithm takes the ASTs of two constraints as input and performs top-
down comparison using the unification rules in Table I. If two constraints are unifiable,
they are z-equivalent. The only special rule in Table I is that two FASTs can be unified
even they are syntactically different. For example, two constraints c1: β1 × (α1 + 34) =
α2 + α2 and c2: β1 × (α3 − α4) = α5 + α5 can be unified as follows. We first identify
(α1 + 34) in c1 and (α3 − α4) in c2 as FASTs using our algorithm. Then (α1 + 34) and
(α3 − α4) can be unified using Rule 3 in Table I. In the first step, c1 is rewritten to
β1×(α3 − α4) = α2+α2. Variables α2 and α5 can be unified by renaming α2 to α5 according
to Rule 2 in Table I. In the second step, c2 is rewritten to β1 × (α3 − α4) = α5 + α5. The
remaining variables and operators of c1 and c2 are identical and can be unified by

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

34:16 Y. Li et al.

other rules in Table I: as such, constraints c1 and c2 are unifiable and z-equivalent.
Once two state constraints are z-equivalent, their corresponding symbolic states are
z-equivalent. We only need to symbolically analyze one of these states. Note that we
only perform z-equivalence detection for the set of states S upon the return of a function
invocation (Section 3.1).

4. IMPLEMENTATION

4.1. Tools

We have implemented our algorithm on top of two symbolic analysis engines, namely,
KLEE [Cadar et al. 2008] and Sym-JVM. KLEE is a symbolic execution engine for
C programs. Sym-JVM is our own Java symbolic analysis engine. Sym-JVM adopts
similar optimizations of KLEE by leveraging copy-on-write and symbolic object lazy
initialization techniques to reduce state forking and memory overheads. These opti-
mizations are essential to applying symbolic analysis to large programs.

4.2. Encoding of Heap Constraints

We introduce obj and val operators to model heaps. If a reference r points to an object
o, we express this relation as obj(r) = o. If the field f of an object o has a value of 5,
we express it as val(o, f) = 5. Arrays can be modeled in a similar way. For example,
our algorithm uses a constraint obj(arr) = a ∧ val(a, 5) = 4 to model arr[5] = 4, where
a denotes an array object. For languages like C, we use offsets instead of field names.
For example, our algorithm generates a constraint obj(p) = m∧ val(m, 0) = α for the
following code with pointer p, memory region m, and index 0 as observable variables
in procedure foo().

void foo(int ∗p){∗p = networkRead(); }.
Similar ideas have been adopted by earlier work [Clarke et al. 2003] to handle heap

constraints. More complex data structures can be represented using these primitive
operators. The difference is that we only use such heap encoding for equivalence detec-
tion purposes. Our algorithm considers the two heap operators obj and val as Type III
operators. This dictates that the constraints related to these operators must have
isomorphic syntactic structures in order to be z-equivalent. Although treating heap
operators as Type III operators appears to affect the degree of reduction, an earlier
study [Hackett and Aiken 2006] shows that large applications mostly use only a small
proportion of global pointers. For non-global pointers, another study [Dillig et al. 2008]
finds that the call chains of pointer propagation are typically short with an average
length of less than six. Many data structures are, therefore, subject to only a few scopes
and can be pruned once they are out of those scopes and become unobservable. As a
result, a lot of states with various heap structures can still be z-equivalent.

4.3. Complex Returns from External Functions

We found that there are a very large number of external function calls in both Java
subjects and Kernel modules. For example, the standard library of JDK 1.7 contains
about 5,000 native methods with 500,000 lines of native code. It is impractical to model
all these functions. Many of these methods return objects of complex data structures.
Hence, simply introducing a fresh symbolic variable is not sufficient. To address this
issue, we allow lazy initialization of unknown data structures [Khurshid et al. 2003].
For example, a program invokes a native function and that function returns an object o.
Our tool first marks the object to be an unknown object. When the subsequent code
accesses a field f in o, our tool would initialize field f to point to a new object x and
mark x to be an unknown object.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

Scaling Up Symbolic Analysis by Removing Z-Equivalent States 34:17

Table II. Java Subject Information

Name Version No. Lines of Code Entry Classes

Apache Ant 1.8.4 128,133
taskdefs.optional.ejb.IPlaneEjbc 1

taskdefs.KeySubst 2
fs.FsShell 3

mapred.TaskTracker 4
hdfs.server.datanode.DataNode 5

hdfs.server.namenode.NameNode 6
hdfs.tools.DFSck 7

Apache Hadoop 0.19.2 203,190 io.compress.CompressionCodeFactory 8
mapred.JobClient 9
mapred.JobShell 10

mapred.lib.aggregate.ValueAggregatorJob 11
mapred.lib.InputSampler 12

mapred.JobTracker 13
util.RunJar 14

demo.IndexFiles 15
Apache Lucene 4.0.0-BETA 392,065 demo.SeachFiles 16

facet.example.multiCL.MultiCLIndexer 17
misc.HighFreqTerms 18

4.4. Equivalence Checks

Our existing implementation uses functions as boundaries to distinguish observable
and unobservable variables. We perform equivalence detection at the end of a function
call. We note that more variables can be identified as unobservable by performing a
forward static analysis to identify the variables that are not directly referenced by
name in the subsequent analysis. We will improve our approach by incorporating such
analysis in our future work.

5. EVALUATION

To evaluate our approach, we ran KLEE and Sym-JVM augmented with our technique
to analyze four large open-source subjects, namely, Ant, Lucene, Hadoop, and Linux
Kernel. To evaluate the scalability of our technique, the Java subjects Ant, Lucene,
and Hadoop we used are much larger than conventional Java benchmark suites (e.g.,
Dacapo 9.12 has 41,593 SLOCs). Since the Java subjects Ant, Lucene, and Hadoop con-
tain multiple main methods, we performed experiments on the main methods listed in
Table II after excluding small main classes with less than 500 reachable methods. The
C subject Linux kernel consists of many components and more than 9.9 million lines of
code. The components are invoked via interrupts and there is no calling relationship
between them. We selected 20 top-level methods in these modules as analysis entry
functions for our experiments. These top-level methods were selected in the following
way. During the compilation phase, we performed call graph traversal and ranked the
top-level functions (i.e., methods with no direct callers in the call graph) according
to the number of object code files reachable from them. Then we selected the top 20
methods. For each of those, we linked the dependent object code into a single “module”.
These modules are about 10–30MB in terms of LLVM bitcode, as shown in Table III.
Note that the bitcode size of the subjects used in the earlier study of KLEE [Cadar
et al. 2008; Kuznetsov et al. 2012] were usually less than 500KB. We ran KLEE to an-
alyze each of the 20 selected methods. Our experiments were run on Linux machines
(CentOS 5, x86 64 edition) with two dual core 2.4GHz AMD Opteron processors and
16GB RAM. We set the maximum allowed memory to 5.5GB.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

34:18 Y. Li et al.

Table III. Linux Kernel (3.4.4) Entry Function Information

Entry Function Size Entry Function Size
acpi battery notify 1 8.3M handle hotplug event fune 11 10M
acpi cpu soft notify 2 9.2M nouveau fbeon find or ereate single 12 21M
acpi pci root add 3 8.7M nouveau load 13 37M
acpi processor add 4 8.8M nv50 display ereate 14 22M
cayman init 5 20M r520 init 15 18M
check sub bridges 6 10M r600 init 16 20M
disable slot 7 11M radeon driver load kms 17 21M
evergreen init 8 20M rv515 init 18 18M
handle hotplug event bridge 9 10M rv770 init 19 20M

shpc probe 10 9.6M vmw driver load 20 22M

For Java programs, we introduced fresh symbolic variables to denote return values
from native calls, I/O APIs, encryption /hashing APIs, and certain string operations
that the underlying Choco constraint solver cannot solve. For Kernel, we considered
return values from functions in the assembly code and the functions that DragonEgg3

failed to convert to LLVM bitcode as external functions. The setups are similar to
earlier studies [Babic and Hu 2008; Chandra et al. 2009].

5.1. Effectiveness of State Reduction

Our first experiment focuses on evaluating the effectiveness of state reduction. For each
entry function, we ran KLEE/Sym-JVM for 24 hours. During the analysis, we recorded
the number of symbolic states in the memory. We also calculated the multiplicities of
symbolic states. Intuitively, the multiplicity of a symbolic state is the number of paths
denoted by the state before reduction. As we discussed earlier, two z-equivalent states
would lead to the traversal of the same set of consequent paths (recall Theorems 3
and 4). Therefore, we can leverage the multiplicity metric to measure the reduction of
states as follows. We denote the multiplicity of a symbolic state s as m(s). Initially, the
multiplicity of a state is one. If we find that one state s1 is z-equivalent to another state
s2, our approach would remove state s2. Then, the updated multiplicity m(s1)’ of s1 is
calculated as: m(s1)’ = m(s1) + m(s2). If state s1 later forks into two states, both of the
forked states would inherit the multiplicity m(s1)’.

Using this metric, Figure 8 shows the reduction in the number of states in the
memory. X-axis corresponds to each entry function of our Java and C subjects. The
Y-axis indicates the reduction in log scale. These reduction results were obtained from
snapshots at the end of the 24 hour period. We can observe from Figure 8 that our
approach can achieve at least a few orders of magnitude reduction in most cases. On
average, our approach achieved 15 orders of magnitude reduction for Java subjects,
and 10 orders of magnitude reduction for the Linux kernel. We know that the amount
of computational resources (e.g., RAM) that a symbolic analysis engine requires at any
time is roughly dependent on the number of symbolic states in the memory at that
time, as shown in Appendix A. As such, the very large numbers of states indicate the
symbolic analysis engine could require an unrealistically large amount of resources
to analyze a large program. Therefore, the memory needing to be consumed for the
analysis on the same set of states without reduction is unavailable. The reduction
achieved by our technique would enable scaling to large programs.

We also studied whether our approach can explore more states given the same time
budget (24 hours). To answer this question, we ran Sym-JVM and KLEE to analyze the

3DragonEgg is a GCC plugin for converting GCC IR to LLVM bitcode. It is available at http://dragonegg.
llvm.org/.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

Scaling Up Symbolic Analysis by Removing Z-Equivalent States 34:19

Fig. 8. State reduction in the analysis of each subject.

Java subjects and 20 modules of Linux kernel with three different state exploration
strategies. For KLEE, the first strategy is random, which explores states in a random
manner. The second strategy uses the distance to uncovered statements as a heuristic to
guide the symbolic analysis engine to cover as many uncovered statements as possible.
These two are the existing state exploration strategies used in KLEE studies [Cadar
et al. 2008; Kuznetsov et al. 2012]. We use them as a comparison baseline to study
our state exploration strategy based on z-equivalence detection. Our state exploration
strategy, namely z-equivalence strategy, works as follows. The state exploration along
a path of a function is paused upon reaching return instructions and waits till all
other paths of the function are explored. When this occurs, we check z-equivalence
among the states collected at return instructions. The base-line strategy of Sym-JVM
is random. Each of these strategies assumes the same set of external functions, which
are considered as uninterpreted functions. Figures 9 and 10 show the comparison. In
the figure, we refer to the previously-mentioned three state exploration strategies as
“Random”, “CoverNew”, and “Z-equivalence”, respectively. Observe that our approach
can explore on average about seven orders of magnitude more states.

Discussion. While our technique is effective in practice, it does not guarantee it
will detect all unconstrained expression sets. Omission can occur when unobservable
variables are tightly coupled. For example, our rules fail to detect the unconstrained
expression (α1 + α2 = β1) ∧ (α2 + α3 = β2) ∧ (α1 + α3 = β2 + α1), because each occurrence
of an unobservable variable in a subexpression is coupled with another one in a different
subexpression. We speculate an effective solution to the problem may require using
nonlinear algorithms. We leave it to our future work.

5.2. Performance

To study the overhead of our approach (mainly the equivalence detection overhead),
we ran Sym-JVM and KLEE with the different state exploration strategies for one
hour to analyze the subject programs and modules. The breakdown of the execution
time is shown in Figure 11. Observe that equivalence detection is only 24% and 6%
of the execution time on average for Sym-JVM and KLEE, respectively. The detection
time overhead is not significant because of the linear complexity of our algorithm. The

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

34:20 Y. Li et al.

Fig. 9. Number of states explored (Sym-JVM).

Fig. 10. Number of states explored (KLEE).

equivalence detection is much more lightweight than other dominant factors, such as
constraint solving. The overhead is higher for Java subjects because Java programs
tend to have a larger number of small functions so that equivalence detection has to
be performed more often. Consequently, the time spent on z-equivalence detection is
relatively more significant.

We further compare the number of analyzed instructions in one hour for the three
strategies to observe if the overhead of the z-equivalence strategy leads to performance
degradation when compared with the random strategy on Sym-JVM (and the ran-
dom strategy and CoverNew strategy on KLEE). For the performance comparison of
z-equivalence, we used the actual number of instructions analyzed by symbolic

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

Scaling Up Symbolic Analysis by Removing Z-Equivalent States 34:21

Fig. 11. Runtime overhead.

execution engines without multiplying it with the multiplicity just discussed. The
instructions here refer to LLVM bitcode for KLEE and Java bytecode for Sym-JVM. To
compare the relative performance, we choose the performance of random strategy as
the basis of comparison. The relative performance of z-equivalence or CoverNew can
thus be measured using a normalized number of instructions given by

#instructions analyzed by the strategy under comparison
#instructions analyzed by random strategy

− 1.

Figure 12 presents the experimental results of the performance comparison. Observe
that z-equivalence is subject to minor (on average 4.1%) performance degradation
on Sym-JVM, while there is no obvious (on average 1%) performance degradation
on KLEE. In some cases, using the z-equivalence strategy can even process more
instructions (positive bars). We believe that this is because of the benefits derived from
constraint caching. Recall that we analyze all paths within a callee before going back
to the caller, which may allow more cache hits.

5.3. Code Coverage

In the next experiment, we study whether our approach is able to increase code coverage
given the same time budget (24 hours).

We present the experimental results in Figure 13. Figures 13(a) and 13(c) give the
results for function coverage, and Figures 13(b) and 13(d) give the results for basic
block coverage. The X-axis represents the analysis of each subject, and the Y-axis
represents the code coverage (e.g., 1.0 means 100%). Observe that our technique sig-
nificantly outperforms the other strategies. On average, by adopting our strategy, the
symbolic analysis engine KLEE can cover 58% functions and 55% basic blocks of the
studied Linux kernel modules. For some subjects, our approach is able to get about 80%

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

34:22 Y. Li et al.

Fig. 12. Runtime performance comparison.

function and block coverage. In contrast, the random strategy can only cover 10% func-
tions and 6% basic blocks, and the heuristic-based “CoverNew” strategy only performs
marginally better than the random strategy. Note that with infinite resource (i.e., time
and memory), the two existing strategies would be able to reach the same coverage as
ours. The advantage of our technique lies in its ability to scale up symbolic analysis
with limited resources. Similarly, Sym-JVM with z-equivalence detection improves the
function coverage and basic block coverage by 40% and 32%, respectively.

5.4. Bug Detection Capability

Better coverage suggests that we can potentially expose more software defects. In the
next experiment, we compare the bug detection capability of the three strategies. In
our experiment, KLEE is used to detect memory errors, while Sym-JVM is configured
to detect null point exceptions, assertion errors, and exceptions thrown out of the main
methods. Figure 14 shows the results. For Sym-JVM, our approach is able to detect
more errors in one third of subjects. For KLEE, our approach can detect one order of
magnitude more errors given the same budget (24 hours). The bugs detected by our
strategy are a super set of those detected by the other two, illustrating the scaling effect
of our technique. All three strategies generate inputs that can be used to confirm the
bugs. Next we show one case of bugs detected by our technique, which was not detected
by the other two.

It is a Linux Kernel bug. Figure 15 presents the relevant code snippets. In snippet
A, variable node is found to be NULL along some paths. Variable node is the alias
of a field called resolved node of the info struct. Our technique analyzes how info is
initialized in Line 185 of nsxfeval.c in Snippet D. The initialization of info involves

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

Scaling Up Symbolic Analysis by Removing Z-Equivalent States 34:23

Fig. 13. Code coverage comparison.

multiple functions, inlined functions, and macros defined in slab def.h, aclinux.h,
utalloc.c, acacros.h, ctype.h, and nspredef.c. Our technique decides that the info-
>resolved node is initialized to NULL. In the third branch, info is passed to
acpi ns evaluate() in Line 264 nsxfeval.c. In Snippet C, info->resolved node is passed
to acpi ns get node(). Our technique determines the path that does not initialize re-
solved node in Snippet B is feasible. The NULL resolved node is hence passed to
acpi ns check for predefined name() and triggers a null pointer de-reference error in
Line 383 of nspredef.c (Snippet A). Our technique also produces the failure inducing in-
put, by assigning NULL to handle, not-NULL to pathname, and “x” to the first element
of pathname. Such a bug can take a long time to find and verify manually because the
relevant code snippets distribute in a few source files. The other two strategies were
not able to explore the faulty path due to the large search space.

We want to point out that our contribution is not to address precision issues caused
by API-approximation, which is a universal issue of many existing static analyses
[Babic and Hu 2008; Babic et al. 2007; Chandra et al. 2009; Dillig et al. 2008], but
rather improving scalability of symbolic analysis. Our reduction does not introduce
any additional imprecision. Given infinite resources, the original KLEE and Sym-JVM
will eventually reach the same coverage, report the same set of warnings, and have
the same true and false positives as our technique, as proven by Theorems 3–6. As

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

34:24 Y. Li et al.

Fig. 14. Runtime errors detected.

mentioned in the introduction section, API over-approximation is a necessary practical
compromise for large real-world programs due to the presence of native methods and
assembly functions. It is also undesirable to apply concolic testing because repeatedly
booting large programs like Kernel is very time consuming.

Our proposed technique enables symbolic analysis to be conducted over those
APIs whose precise models are unavailable, by approximating their behaviors using
uninterpreted functions. Our experimental results based on real subjects show that
such API-approximation is able to provide useful analysis. For example, Sym-JVM
finds an assertion violation in the Lucene3xSegmentInfoReader class in the Lucene
project. The assertion is given in Example 1 in Figure 16. The violation indicates that
the program has not taken appropriate actions to handle malicious inputs. Symbolic
analysis can be used to check these user-provided assertions, including the asser-
tions that are implemented by invoking a user-specified function to check complex

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

Scaling Up Symbolic Analysis by Removing Z-Equivalent States 34:25

Fig. 15. One bug example in Linux kernel.

properties. In Example 2 shown in Figure 16, Sym-JVM finds that the exception in
Line 14 is thrown out of the main method without being properly handled. Sym-JVM
also found other true warnings4 with test cases in the experiment.

Static analysis is generally subject to various sources of imprecision, including points-
to analysis, arithmetic, value over-approximation caused by merging, path/context-
sensitivity, and external API approximation, and so on. In view of the unavailability
of a precise model for many native APIs [Pǎsǎreanu et al. 2008], API approximation is
a pragmatic trade-off to enable the use of symbolic analysis to many large open-source
projects as well as those developed over a relatively volatile set of APIs, such as
Android.

5.5. Comparison with Merging Techniques

Another approach to reducing the number of paths explored in symbolic analysis is
to merge the constraints arising from different paths [Kuznetsov et al. 2012]. For ex-
ample, two paths from code snippets: if (a > 0)x = 2 else x = 34 can be encoded by
a single constraint (a > 0 → x = 2) ∨ (a ≤ 0 → x = 34). A key issue in applying
this approach to real-world large programs is to merge different program states with
various heap structures. One solution is to use constraint solvers to resolve all store

4http://sccpu2.cse.ust.hk/symjvm/testcases for java.zip. User name: symjvm, password: password.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

34:26 Y. Li et al.

Fig. 16. Examples from java subjects.

and load operations by treating the entire address space as a single flat array. However,
Cadar et al. [2008] found that no known constraint solvers are able to solve the resul-
tant complex constraints generated from large programs. This explains why existing
symbolic analysis engines like KLEE [Cadar et al. 2008] do not fully rely on constraint
solvers to reason about heap-related behavior. Instead, they decompose memory into
smaller objects and resolve objects by the engine itself with some support of con-
straint solvers. Due to the complexity of heap constraints, existing constraint merging
techniques [Cadar et al. 2008; Kuznetsov et al. 2012] for symbolic analysis engines re-
quire merging constraints to have compatible heap structures. Even so, the constraints
generated by merging may increase the constraint solving time significantly [Ganesh
and Dill 2007; Kuznetsov et al. 2012]. The state of the art is to use query count estima-
tion to selectively merge constraints [Kuznetsov et al. 2012]. In particular, it was found
that merging frequently queried constraints will substantially increase the computa-
tion time for constraint solving. As a result, only those that are infrequently queried
are subject to merging.

In this experiment, we adapt the implementation in Kuznetsov et al. [2012] on KLEE
and compare its performance with our approach on the Linux Kernel modules. We use
the same configuration (e.g., query count thresholds) as in Kuznetsov et al. [2012] for
a fair comparison. The results are shown in Figures 17 and 18. In Figure 19, we show
that our technique is able to achieve higher coverage than that of merging based on
24 hours of computation.

The better performance of our technique can be attributed to the following three rea-
sons. First, large subject programs lead to complex formulas after constraint merging
(as illustrated in Figure 17). These formulas are difficult to solve. As a result, a lot of
execution time was spent on constraint solving (15 times more on average according

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

Scaling Up Symbolic Analysis by Removing Z-Equivalent States 34:27

Fig. 17. Constraint size distribution (r600 init).

Fig. 18. Constraint query mean time.

to Figure 18). Second, these programs tend to have different heap structures along
different paths such that their constraints cannot be merged.

Third, state merging based on query-count-estimation cannot resolve the path explo-
sion issue when the constraints are indeed queried frequently, which tends to be true
in complex programs. The code snippet in Figure 20 is from one of our subject modules.
The variable pr is returned from per cpu(). Multiple states are forked from the loop
inside per cpu(). Since pr is queried intensively, the states of pr are not merged. In con-
trast, our technique can help traverse such complex program blocks where constraint
merging shows no advantages in this case. In this example, our technique would con-
clude that there are only two cases, that is, pr is NULL or pr point to one acpi processor
structure, since the rest of non-NULL structures are z-equivalent.

In fact, merging and z-equivalent state removal are orthogonal to each other. State
removal can reduce the number of states to be merged so that the resulting constraints
can be simplified.

6. RELATED WORK

A wide range of program analyses can be modeled as constraint solving problems
[Gulwani et al. 2008]. Dillig et al. proposed a constraint based static analysis [2008], in
which programs are modeled as a quantified and recursive formula, allowing for precise
representation of path-sensitive and context-sensitive properties. They proposed the
idea of separating variables to the observable and unobservable classes to prevent mod-
eling unnecessary low-level complexity. Our technique was originally inspired by this
idea. In comparison, their technique is driven by the syntactic structure of a program.
Their constraints encode multiple paths in one formula. Our technique maintains mul-
tiple symbolic states or constraints, each of which corresponds to a single path. In other

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

34:28 Y. Li et al.

Fig. 19. Coverage comparison between merge/z-equivalence.

Fig. 20. Example code.

words, our constraints are generated in a fashion similar to program execution, and the
entailed z-equivalent detection is hence unique. Our technique can be applied to test
generation, whereas that of Dillig et al. [2008] is mainly for static verification. Another
key difference is that Dillig et al. [2008] assumes that variables have a finite domain
such that each variable can only bind to a few abstract values. Finite domain assump-
tion allows them to eliminate unobservable variables by enumerating their values to
eliminate quantifiers. However, quantifier elimination for quantified Boolean formulae

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

Scaling Up Symbolic Analysis by Removing Z-Equivalent States 34:29

is PSPACE-complete and requires an exponential complexity algorithm [Reiter and
Clayton 2013]. Our approach does not assume a finite domain and allows arbitrary
arithmetic operations, which makes z-equivalence widely applicable to a large set of
programs. At the same time, such equivalence detection is challenging.

Symbolic analysis has aroused a lot of research interest [Cadar et al. 2008; Chandra
et al. 2009; Godefroid 2007; Kothari et al. 2008; Person et al. 2008; Xie et al. 2003;
Cui et al. 2013]. Babic et al. proposed improving the scalability of symbolic analysis by
using structural abstraction and refinement [Babic and Hu 2008; Babic et al. 2007]. The
technique achieves scalability by analyzing portions of a program, while our approach
achieves scalability by detecting equivalent symbolic states. The mechanism of Babic
et al.’s techique for analyzing a path segment instead of a path from a program entry
makes it difficult to construct test cases that validate warnings.

Symbolic analysis has been used in test-case generation [Cadar et al. 2008; Godefroid
2007; Godefroid et al. 2005; King 1976; Kuznetsov et al. 2012; Sen et al. 2005]. The
very large search space due to path explosion is a challenge when performing symbolic
analysis on large programs. One approach is to distribute the task of path exploration
to different machines by partitioning paths [Siddiqui and Khurshid 2012]. An alterna-
tive approach to addressing path explosion is to study the trade-off between exploring
simpler execution states and fewer complex merged symbolic states [Godefroid 2007;
Kuznetsov et al. 2012]. Godefroid [2007] proposed using method summaries to encode
multiple program input and output mapping using disjunction of constraints. In do-
ing so, symbolic analysis can help avoid exploring so many simple paths. However,
Kuznetsov et al. [2012] pointed out that the resulting merged constraints become more
complex and more difficult to solve. They proposed selective merging techniques us-
ing cost/benefit analysis to merge only some selected states, such as those that are
infrequently queried. The principle of many of these of approaches [Cadar et al. 2008;
Kuznetsov et al. 2012] is essentially to shifting the search space burden to the under-
lying solver. As program sizes become large, the resulting merged constraints can be
too expensive for the solver to solve. This is one reason why existing tools [Cadar et al.
2008; Kuznetsov et al. 2012] have mostly been used for subjects with less than 10,000
lines of code, for example, Linux coreutils. The difference between these approaches
and ours is that our approach removes states instead of merging them. This allows
our approach to scale well with respect to increased program sizes. Boonstoppel et al.
[2008] proposed a state reduction technique by discarding the comparison of those
variables that are not read in the subsequent analysis. Our approach is more general:
since our approach can still detect equivalence, even a symbolic variable is read in
the subsequent analysis and achieves better effectiveness in terms of state reduction.
Bugrara and Engler [2013] proposed using dynamic slicing to reduce symbolic states
such that the technique would not explore uncovered statements. Their reduction does
not guarantee soundness or completeness regarding to answering validity and satisfia-
bility queries. Anand et al. [2009] proposed using shape analysis to perform abstraction
of data structures, and their abstraction can be used as a subsumption analysis. Their
approach does not guarantee soundness of reduction because their abstraction is an
approximation.

In the context of regression testing, researchers try to reduce unnecessary exploration
of paths that have the same effect on the modified program statements [Person et al.
2008, 2011; Santelices and Harrold 2010]. They require “sink” statements as inputs
such that redundant exploration of paths that have equivalent effects to these “sink”
statements are avoided. They analyze data/control dependences statically to achieve
the goal.

A state matching technique has been used in Java PathFinder (JPF) [Visser et al.
2006]. Visser et al. proposed using explicit state matching and abstract state matching

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

34:30 Y. Li et al.

Fig. 21. Relation between number of states in memory and memory consumption in MBs.

to test containers. Explicit state matching is different from symbolic state matching
proposed by our approach in that one symbolic state can represent many concrete
states. Abstract state matching [Visser et al. 2006] requires domain knowledge about
applications under analysis to appropriately encode such abstract states, which is not
general to all applications. Our approach is general and does not require application-
specific domain knowledge.

Our z-equivalence detection technique can be considered as a technique for detect-
ing redundant constraints in the constraint satisfaction literature. However, the com-
plexity of the general-purpose redundant constraint detection algorithm is O(na3),
where n is the number of variables and a is the domain size [Tsang 1993]: note that
a can be as large as 232 for a 32-bit integer. Our technique achieves linear-time com-
plexity by exploiting two types of domain knowledge: (1) uninterpreted functions and
(2) classification of operators (Type I, Type II, and Type III operators).

7. CONCLUSION

We propose z-equivalence, a kind of equivalence correlation between symbolic states. It
is weaker than logical equivalence and can capture a significant number of z-equivalent
states in real-world applications, enabling substantial search space reduction. We prove
that z-equivalence is strong enough to ensure that two z-equivalent states in the subse-
quent symbolic analysis must traverse the same set of paths and give exactly the same
answers to the same satisfiability or validity queries. Although deciding z-equivalence
is in general undecidable, we propose a linear algorithm to give a sound answer to
decide z-equivalence such that our algorithm will never classify two non-z-equivalent
states as equivalent. The empirical study shows that our approach is effective for re-
ducing a significant number of z-equivalent states and allows symbolic analysis to scale
up to large applications like Hadoop and Linux Kernel.

APPENDIX

A. NUMBER OF STATES IN MEMORY AND MEMORY CONSUMPTION

We recorded the number of states in memory and memory consumption for both en-
gines. In Figure 21(a), the memory consumption for KLEE is proportional to the number
of states. In Figure 21(b), the memory consumption for Sym-JVM is also related to the
number of states. The memory consumption for Sym-JVM is segmented because JVM
always pre-allocates memory from the OS and manages the allocation itself.

ACKNOWLEDGMENTS

The authors would like to thank Tao He for his help in conducting an initial study on KLEE.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

Scaling Up Symbolic Analysis by Removing Z-Equivalent States 34:31

REFERENCES

Saswat Anand, Corina S. Pǎsǎreanu, and Willem Visser. 2009. Symbolic execution with abstraction.
Int. J. Softw. Tools Technol. Transf. 11, 1 (2009), 53–67. DOI=10.1007/s10009-008-0090-1 http://dx.
doi.org/10.1007/s10009-008-0090-1

Domagoj Babic and Alan J. Hu. 2008. Calysto: Scalable and precise extended static checking. In Proceedings
of the 30th International Conference on Software Engineering (ICSE’08). ACM, New York, NY, 211–220.

Domagoj Babic and Alan J. Hu. 2007. Structural abstraction of software verification conditions. In Proceed-
ings of the 19th International Conference on Computer Aided Verification (CAV’07). Springer, Berlin.
371–383.

Peter Boonstoppel, Cristian Cadar, and Dawson Engler. 2008. RWset: Attacking path explosion in constraint-
based test generation. In Proceedings of the European Joint Conference on Theory and Practice of
Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’08/ETAPS’08). C. R. Ramakrishnan and Jakob Rehof (Eds.), Springer-Verlag, Berlin,
Heidelberg, 351–366.

Suhabe Bugrara and Dawson Engler. 2013. Redundant state detection for dynamic symbolic execution. In
Proceedings of the USENIX Annual Technical Conference (ATC’13). USENIX Association, Berkeley, CA,
199–212.

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation (OSDI’08). USENIX Association, Berkeley, CA, 209–
224.

Satish Chandra, Stephen J. Fink, and Manu Sridharan. 2009. SnuggleBug: A powerful approach to weakest
preconditions. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’09). ACM, New York, NY, 363–374.

Avik Chaudhuri and Jeffrey S. Foster. 2010. Symbolic security analysis of Ruby-on-Rails Web applications.
In Proceedings of the 17th ACM Conference on Computer and Communications Security (CCS’10). ACM,
New York, NY, 585–594.

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2012. The S2E platform: Design, implemen-
tation, and applications. ACM Trans. Comput. Syst. 30, 1, Article 2 (2012).

L. A. Clarke. 1976. A system to generate test data and symbolically execute programs. IEEE Trans. Softw.
Eng. 2, 3 (1976), 215–222.

Edmund Clarke, Daniel Kroening, and Karen Yorav. 2003. Behavioral consistency of C and verilog pro-
grams using bounded model checking. In Proceedings of the 40th Annual Design Automation Conference
(DAC’03). ACM, New York, NY, 368–371.

Heming Cui, Gang Hu, Jingyue Wu, and Junfeng Yang. 2013. Verifying systems rules using rule-directed
symbolic execution. In Proceedings of the 18th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’13). ACM, New York, NY, 329–342.

Isil Dillig, Thomas Dillig, and Alex Aiken. 2008. Sound, complete and scalable path-sensitive analysis. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’08). ACM, New York, NY, 270–280.

Vijay Ganesh and David L. Dill. 2007. A decision procedure for bit-vectors and arrays. In Proceedings of
the 19th International Conference on Computer Aided Verification (CAV’07). Werner Damm and Holger
Hermanns (Eds.), Springer-Verlag, Berlin, Heidelberg, 519–531.

Patrice Godefroid. 2007. Compositional dynamic test generation. In Proceedings of the 34th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’07). ACM, New York,
NY, 47–54.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed automated random testing. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’05). ACM, New York, NY, 213–223.

Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. 2008. Program analysis as constraint
solving. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI’08). ACM, New York, NY, 281–292.

Brian Hackett and Alex Aiken. 2006. How is aliasing used in systems software? In Proceedings of the 14th
ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE’06). ACM, New
York, NY, 69–80.

Michael Huth and Mark Ryan. 2004. Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge University Press.

James C. King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (1976), 385–394.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

34:32 Y. Li et al.

Sarfraz Khurshid, Corina S. Pǎsǎreanu, and Willem Visser. 2003. Generalized symbolic execution for model
checking and testing. In Proceedings of the 9th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’03). Hubert Garavel and John Hatcliff (Eds.), Springer-
Verlag, Berlin, Heidelberg, 553–568.

Nupur Kothari, Todd Millstein, and Ramesh Govindan. 2008. Deriving state machines from TinyOS pro-
grams using symbolic execution. In Proceedings of the 7th International Conference on Information
Processing in Sensor Networks (IPSN’08). IEEE Computer Society, Los Alamitos, CA, 271–282.

Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. 2012. Efficient state merging in
symbolic execution. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’12). ACM, New York, NY, 193–204.

Yueqi Li, S. C. Cheung, Xiangxu Zhang, and Yepang Liu. 2013. Scaling up symbolic analysis by removing Beta-
equivalent states. Technical Report HKUST-CS13-06. Hong Kong University of Science and Technology.

T. Murata. Petri nets: Properties, analysis and applications. 1989. Proc. IEEE, 77, 4, 541–580.
Mayur Naik, Hongseok Yang, Ghila Castelnuovo, and Mooly Sagiv. 2012. Abstractions from tests. In Proceed-

ings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’12). ACM, New York, NY, 373–386.

Suzette Person, Matthew B. Dwyer, Sebastian Elbaum, and Corina S. Pǎsǎreanu. 2008. Differential sym-
bolic execution. In Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE’08). ACM, New York, NY, 226–237.

Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid. 2011. Directed incremental symbolic
execution. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’11). ACM, New York, NY, 504–515.

Corina S. Pǎsǎreanu, Peter C. Mehlitz, David H. Bushnell, Karen Gundy-Burlet, Michael Lowry, Suzette
Person, and Mark Pape. 2008. Combining unit-level symbolic execution and system-level concrete ex-
ecution for testing nasa software. In Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA’08). ACM, New York, NY, 15–26.

Dawei Qi, William N. Sumner, Feng Qin, Mai Zheng, Xiangyu Zhang, and Abhik Roychoudhury. 2012.
Modeling software execution environment. In Proceedings of the 19th Working Conference on Reverse
Engineering (WCRE’12). IEEE Computer Society, Los Alamitos, CA, 415–424.

Edna E. Reiter and Matthew Johnson Clayton. 2013. Limits of Computation: An Introduction to the Unde-
cidable and the Intractable. CRC Press

Stuart Russell and Peter Norvig. 2003. Inference in first order logic. In Artificial Intelligence, A Modern
Approach, Prentice Hall.

Raul Santelices and Mary Jean Harrold. 2010. Exploiting program dependencies for scalable multiple-
path symbolic execution. In Proceedings of the 19th International Symposium on Software Testing and
Analysis (ISSTA’10). ACM, New York, NY, 195–206.

Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A concolic unit testing engine for C. In Proceedings
of the 10th European Software Engineering Conference held jointly with the 13th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering (FSE’05). ACM, New York, NY, 263–272.

Junaid Haroon Siddiqui and Sarfraz Khurshid. 2012. Scaling symbolic execution using ranged analysis. In
Proceedings of the ACM International Conference on Object Oriented Programming Systems Languages
and Applications (OOPSLA’12). ACM, New York, NY, 523–536.

Edward Tsang. 1993. Problem redunction by removing redundant constraints. In Foundations of Constraint
Satisfaction, Computation in Cognitive Science Series, Academic Pr.

Willem Visser, Corina S. Pǎsǎreanu, and Radek Pelánek. 2006. Test input generation for Java containers
using state matching. In Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA’06). ACM, New York, NY, 37–48.

Yichen Xie, Andy Chou, and Dawson Engler. 2003. ARCHER: Using symbolic, path-sensitive analysis to
detect memory access errors. In Proceedings of the 9th European Software Engineering Conference held
jointly with the 11th ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE’03). ACM, New York, NY, 327–336.

Received July 2013; revised February 2014; accepted March 2014

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 34, Pub. date: August 2014.

