
How Do Python Framework APIs Evolve?
An Exploratory Study

Zhaoxu Zhang∗, Hengcheng Zhu∗, Ming Wen†, Yida Tao‡, Yepang Liu∗, and Yingfei Xiong§
∗ Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China.

{11611308, zhuhc2016}@mail.sustech.edu.cn, liuyp1@sustech.edu.cn
† School of Cyber Sci. and Engr., Huazhong Univ. of Sci. and Tech., Wuhan, China. mwenaa@hust.edu.cn
‡ College of Comp. Sci. and Soft. Engr., Shenzhen University, Shenzhen, China. yidatao@szu.edu.cn

§ Department of Computer Science and Technology, EECS, Peking University, Beijing, China. xiongyf@pku.edu.cn

Abstract—Python is a popular dynamic programming lan-
guage. In recent years, many frameworks implemented in Python
have been widely used for data science and web development.
Similar to frameworks in other languages, the APIs provided by
Python frameworks often evolve, which would inevitably induce
compatibility issues in client applications. While existing work
has studied the evolution of frameworks in static programming
languages such as Java, little is known on how Python framework
APIs evolve and the characteristics of the compatibility issues
induced by such evolution. To bridge this gap, we take a
first look at the evolution of Python framework APIs and the
resulting compatibility issues in client applications. We analyzed
288 releases of six popular Python frameworks from three
different domains and 5,538 open-source projects built on these
frameworks. We investigated the evolution patterns of Python
framework APIs and found that they largely differ from those
of Java framework APIs. We also investigated the compatibility
issues in client applications and identified common strategies
that developers adopt to fix these issues. Based on the empirical
findings, we designed and implemented a tool, PYCOMPAT, to
automatically detect compatibility issues caused by misusing
evolved framework APIs in Python applications. Experiments on
10 real-world projects show that our tool can effectively detect
compatibility issues of developers’ concern.

Index Terms—Python, API evolution, compatibility, dynamic
programming language

I. INTRODUCTION

As the fastest-growing programming language in recent
years, Python has reached a new peak in 2019’s TIOBE [1] and
PYPL [2] index of the popularity of programming languages,
ranking the third and first place, respectively. The astonishing
growth of Python is largely attributed to the rising interests and
needs in data analytics, deep learning, and web services [3].
Respective Python libraries such as Pandas, TensorFlow and
Django are all extremely popular and used by hundreds of
thousands of client applications.

Similar to frameworks implemented in other languages, the
frameworks implemented in Python (Python frameworks for
short) also evolve due to reasons such as feature additions,
bug fixes, and performance enhancement. Existing work has
pointed out that framework evolution may induce compat-
ibility issues in client applications. For example, Dietrich

* The first two authors contributed equally to this work. Yepang Liu is the
corresponding author.

et al. [4] studied the evolution problems in Java libraries.1

Wei et al. [5] studied the compatibility issues induced by
Android API evolution. However, existing work focused on the
evolution of frameworks implemented in static programming
languages (SPLs) such as Java. Python, as a typical dynamic
programming language (DPL), differs largely from SPLs. It is
unclear whether existing findings based on SPL frameworks
can be generalized to Python as well. For example, in the
post 38739422 of Stack Overflow [6], users discussed how
the removal of an optional parameter context_instance in
the API render_to_response of Django leads to a crash
when keyword argument is used to invoke the API. This Stack
Overflow post has 62 upvotes and 28,393 views, indicating
the profound impact of such issues among Python developers.
Unfortunately, such important issues caused by API evolution
of Python frameworks cannot be covered by existing studies
on SPL frameworks. This motivates us to take a first look at
the evolution of Python frameworks and the resulting com-
patibility issues. Specifically, we aim to answer the following
research questions in this work:
• RQ1 (Framework API Evolution Patterns): How do

Python framework APIs evolve? What are the common pat-
terns? How do such patterns differ from the API evolution
patterns of SPL frameworks?

• RQ2 (Compatibility Issues & Fixing Strategies): What
types of compatibility issues could Python framework API
evolution incur in client applications? How do application
developers fix such compatibility issues?
To answer these questions, we analyzed 288 releases of six

popular Python frameworks from three different domains and
5,538 GitHub [7] projects that are built on these frameworks.
By exploring this dataset, we have made several interesting
findings. First, we observed 14 API evolution patterns for
Python frameworks, 5 of which were not observed in the
evolution of Java frameworks [8]. These five distinct patterns
are associated with changes to optional parameters and default
parameter values, which are not supported by Java. Second,
we found that the percentage of breaking changes during the
evolution of Python frameworks is significantly higher than
that of Java frameworks. Third, by studying 409 compatibility

1We use “framework” and “library” interchangeably in this paper.

978-1-7281-5143-4/20 c© 2020 IEEE SANER 2020, London, ON, Canada
Research Papers

Accepted for publication by IEEE. c© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

81

issues, we found that Python applications using evolved APIs
often suffer from crashes caused by over 10 types of runtime
exceptions, many of which are specific to Python. We further
studied the patches of these compatibility issues, and observed
that Python developers mainly adopt four kinds of strategies
to fix such issues caused by the evolution of framework APIs.

Based on our empirical findings, we designed and imple-
mented a tool, PYCOMPAT, to automatically detect potential
compatibility issues caused by misusing evolved framework
APIs in Python applications. The tool is powered by a
knowledge base that encodes the evolution history of Python
framework APIs. It performs light-weight static analyses at
the call sites of evolved APIs and applies backward slicing to
determine if compatibility issues could arise due to potential
API misuses. To evaluate the tool, we applied it on 10 Python
applications that use TensorFlow. PYCOMPAT detected com-
patibility issues at 261 API call sites in these projects, 231
(88.5%) of which are true positives. We further reported these
issues to the projects’ developers. So far, the developers of
four projects have confirmed our reported 74 issues and fixed
them quickly.

To summarize, this paper makes four major contributions:
• To our best knowledge, we performed the first systematic

study to characterize the evolution of Python framework
APIs. We also discussed the similarities and differences
between the API evolution in Python and Java frameworks.

• We quantitatively and qualitatively analyzed the types of
compatibility issues caused by misusing evolved APIs in
Python applications and the commonly adopted fixing strate-
gies. Our findings may help application developers to cope
with framework evolution issues more effectively.

• We built a dataset, which contains the API evolution his-
tories of six popular Python frameworks, the compatibil-
ity issues, and the corresponding fixes in Python appli-
cations. We released the data to facilitate future research
(https://doi.org/10.5281/zenodo.2756358).

• We designed and implemented a tool, PYCOMPAT, to detect
compatibility issues in Python applications. Experiments on
10 real-world projects show that our tool can effectively
detect issues of developers’ concern.

II. BACKGROUND

A. The Python Programming Language

Dynamic programming languages (DPLs) are a class of
high-level programming languages which, at runtime, execute
many common program behaviors (e.g., extending objects and
definitions) that static programming languages (SPLs) perform
during compile time [9]. Python is a popular DPL. Python
programs are executed by an interpreter. When the interpreter
translates a .py source file to a .pyc file, which contains byte
code, it performs little checking. Due to this reason, problems
caused by violating type compatibility rules, calling missing
APIs, and even syntax errors will not manifest until runtime.

Argument passing in Python is flexible. When calling a
Python function, arguments can be passed as either positional

TABLE I
SELECTED FRAMEWORKS

Framework Category # Releases Versions

TensorFlow [16]
Deep learning

67 0.12.0rc0 – 2.0.0a0
Keras [17] 35 1.0.2 – 2.2.4

scikit-learn [18]
Data analytics

24 0.15.0b1 – 0.20.3
Pandas [19] 42 0.9.1 – 0.24.2

Flask [20]
Web development

12 0.10 – 1.0.2
Django [21] 108 1.8 – 2.2rc1

or keyword arguments [10]. A default value can also be spec-
ified for a parameter. It is not compulsory to pass arguments
for such parameters at call sites.

Python has no access modifiers. Python developers often
follow a widely-adopted convention to make the name of class
members that should be treated as “private” start with un-
derscores. However, there is no language-level mechanism to
prevent accessing such “private” members of library modules.

B. Library Referencing and Evolution

Libraries ease application development [11]. Many popular
libraries frequently evolve. Due to such evolution, an applica-
tion may encounter different versions of its referenced libraries
when it is launched in different environments [11].

Despite the existence of tools for creating isolated envi-
ronments (e.g., virtualenv [12]) for Python applications, many
Python libraries are installed with pip [13], which downloads
packages from an online software repository PyPI [14] and
installs them for system-wide access. In such cases, libraries
might not be updated simultaneously with applications. It is
common for a Python program to rely on a certain version of
a library but to run in an environment with an older version of
that library. This could result in various compatibility issues.

C. Breaking Changes and Non-Breaking Changes

API changes can be breaking or non-breaking according
to their consequences [15]. Breaking changes are backward-
incompatible and would cause compilation or runtime prob-
lems in client code. For example, signature changes in Java
APIs would cause compilation errors. Non-breaking changes
(e.g., performance enhancement) are backward compatible and
typically would not cause perceivable issues in client code.

III. SUBJECT SELECTION

A. Framework Selection

Answering RQ1 requires us to study real-world Python
frameworks. To select such frameworks, we searched on
GitHub, a popular open-source project hosting site, with the
keyword topic:python. We sorted the returned results by
the number of stars, which is an indicator of popularity. We
checked the top projects and found that they mainly fall into
three categories: (1) deep learning, (2) data analytics, and (3)
web development. We then selected the top two projects in
each of these categories for analysis. Table I lists the projects.

82

https://doi.org/10.5281/zenodo.2756358

B. Client Applications Selection

Answering RQ2 requires us to study the change histories
and bugs of the projects built on our selected Python frame-
works. To collect such projects, we searched on GitHub using
the keywords topic:<framework> and language:python
to retrieve repositories that reference each of the six frame-
works as listed in Table I. For each framework, we selected the
top 1,000 repositories with the most stars. By this process, we
obtained a set of 5,538 unique repositories. The number is not
equal to 6,000 (1, 000 × 6) mainly because of two reasons.
First, some repositories use more than one of our selected
frameworks. Second, there are less than 1,000 projects using
scikit-learn on GitHub by our searching criteria.

IV. FRAMEWORK API EVOLUTION PATTERNS

A. API Extraction Approach

To answer RQ1, we need to analyze the evolution of the
APIs provided by our selected frameworks. As shown in
Table I, we collected 288 releases for subsequent analysis.

Extracting Python library APIs is non-trivial.2 Different
from many SPLs, Python objects such as functions can be
dynamically created and altered at runtime. In practice, Python
developers often leverage this feature to map long fully qual-
ified names of certain APIs to shorter ones. For example, in
TensorFlow, tf.python.ops.array_ops.concat is mapped
to tf.concat. Such mapped APIs with shorter names (usually
recommended by library developers3) cannot be extracted via
static analysis since they are not available until runtime. To
address this issue, we extracted APIs including fields, methods,
and classes dynamically using reflection.4

Specifically, we downloaded our selected framework re-
leases from PyPI [14], a repository that indexes millions of
Python frameworks. For each release, we imported the library,
and then performed a breadth-first search starting from the
root module, aiming to extract all the public APIs mentioned
above. This process was run in containers using Docker [22],
which isolates the API extraction from the configuration of
a specific physical machine. Besides, containers enable us to
speed up the extraction by running it in parallel on a multi-
processor server. Note that we need to analyze hundreds of
library releases, each of which may expose thousands of APIs.
After this, we obtained a dataset containing the public APIs
in each release of our selected frameworks.

B. Evolution Patterns

To understand API evolution patterns, for each of the six
frameworks, we first compared the extracted APIs of every
two consecutive releases based on information like name and
signature. By such comparisons, we found 1,094,359 API
changes. In this study, we mainly focus on syntactic changes
instead of semantic changes (e.g., the behavior of a method

2We did not extract APIs from API documentations because we found that
they are often unstructured, incomplete, and outdated.

3tf.concat is in TensorFlow documentation while the longer one is not.
4We use “methods” in this paper to refer to functions in a class as well as

those out of class. The same applies to “fields”.

changes but the method signature remains unchanged), since
identifying the latter requires program comprehension, which
is hard to automate. Without an automated process, it is
impractical to analyze over one million changes. Next, we
developed a set of matching rules based on nine known API
evolution patterns [8], which are listed in Table II (patterns
1–7 and 13–14). These rules helped classify 1,064,081 of the
1,094,359 changes into the nine patterns. For the remaining
30,278 unclassified API changes, we performed random sam-
pling and found that they are related to optional parameters.
Accordingly, we composed two matching rules for the addi-
tion/removal of optional parameters (patterns 8–9 in Table II)
and another three rules for the changes of parameter default
values, which may turn a required parameter into an optional
one or the other way around (patterns 10–12 in Table II). Using
these five rules, we were able to classify all of the remaining
30,278 API changes.

In total, we identified 14 API evolution patterns in our
studied Python frameworks, five of which have not been
observed in Java frameworks according to a recent work [8].
Table II presents the results, including the frequency of each
pattern. In the following, we discuss these patterns in detail.

API addition and removal (96.3%). Most API changes
are additions (49.0%) and removals (47.3%) of classes, meth-
ods, and fields. As described in Section II-C, API additions
are non-breaking changes while API removals are break-
ing changes. These API changes happened mainly because
framework developers implemented new features or cleaned
up deprecated features. We also observed that some API
removals and additions happened because developers relocated
or renamed certain API elements. For example, in Pandas
0.18.0, pd.rolling_mean was relocated and then renamed to
pd.DataFrame.rolling. However, without project-specific
domain knowledge or high-quality changelogs, it is hard to
dig out such reasons behind API changes.

Parameters changes (3.7%). The remaining API changes
are related to method parameters, which are considered as
breaking changes [8]. As listed in Table II, we observed eight
change patterns in this category, three of which also apply to
Java (patterns 5–7) while the other five are specific to Python
(patterns 8–12). We discuss the patterns below. Note that the
percentages presented below are with respect to parameter
changes instead of all API changes.

(1) Addition and removal of required parameters. Sim-
ilar to Java, adding (12.8%) and removing (8.2%) required
parameters are also observed in our six frameworks.

(2) Reordering parameters. We observed 840 (2.1%)
cases of parameter reordering. For instance, in Keras 2.0.6, the
order of the parameters output and target in keras.back-
end.binary_crossentropy was inverted to be consistent
with other APIs. Such changes could crash client code if
positional arguments are used in API calls (e.g., foo(1, 2)).

While the above parameter changes can also happen during
the evolution of Java frameworks, the following patterns can-
not. Such changes occurred because Python supports default
parameter values in method declarations.

83

TABLE II
API EVOLUTION PATTERNS AND MATCHING RULES

Index Element Pattern Frequency Matching Rule Change Type

1
Class (c)

Class Removal∗ 25,481 (2.3%) c ∈ C ∧ c /∈ C′ Breaking
2 Class Addition∗ 26,694 (2.4%) c /∈ C ∧ c ∈ C′ Non-Breaking

3

Method (m)

Method Removal∗ 309,759 (28.3%) m ∈M ∧m /∈M ′ Breaking
4 Method Addition∗ 319,618 (29.2%) m /∈M ∧m ∈M ′ Non-Breaking
5 Required Parameter Addition∗ 5,026 (0.5%) ∃p /∈ P, p ∈ P ′ ∧ ¬opt(p) Breaking
6 Required Parameter Removal∗ 3,218 (0.3%) ∃p ∈ P, p /∈ P ′ ∧ ¬opt(p) Breaking
7 Parameter Reordering∗ 840 (0.1%) ∃p1, p2 ∈ P ∩ P ′, p1 ≺ p2 ∧ p′1 � p′2 Breaking
8 Optional Parameter Addition 12,996 (1.2%) ∃p /∈ P, p ∈ P ′ ∧ opt(p) Breaking
9 Optional Parameter Removal 4,063 (0.4%) ∃p ∈ P, p /∈ P ′ ∧ opt(p) Breaking

10 Parameter Default Value Addition 1,006 (0.1%) ∃p ∈ P ∩ P ′,¬opt(p) ∧ opt(p′) Breaking
11 Parameter Default Value Removal 851 (0.1%) ∃p ∈ P ∩ P ′, opt(p) ∧ ¬opt(p′) Breaking
12 Parameter Default Value Change 11,362 (1.0%) ∃p ∈ P ∩ P ′, def(p) 6= def(p′) Breaking

13
Field (f)

Field Removal∗ 182,826 (16.7%) f ∈ F ∧ f /∈ F ′ Breaking
14 Field Addition∗ 190,619 (17.4%) f /∈ F ∧ f ∈ F ′ Non-Breaking

“p” and “P ” denote a single parameter and a parameter list, respectively. “c” and “C” denote a single class and a set of classes in a release, respectively
(“m” and “M”, “f” and “F ” can be interpreted similarly). “∗” means that this pattern also applies to Java. “′” denotes the new API version.
“opt(p)” means that the parameter p is optional. “def(p)” denotes the default value of p. “a ≺ b” / “a � b” denotes parameter a is before/after b.

def avg_pool(value, ksize, ...): # 1.13.1

def avg_pool(value, ksize, ..., input=None): # 1.14.0−rc0
input = value if input is not specified

def avg_pool(input, ksize, ...): # 2.0.0−alpha0

Listing 1. Signature evolution of tf.nn.avg_pool in TensorFlow

(1) Optional parameter addition and removal. Compared
to required parameters, the addition (33.0%) and removal
(10.3%) of optional parameters are more frequent. Such
changes can make API usages more flexible. For instance,
in Flask 1.0, an optional parameter static_host was added
to the constructor of the class Flask to allow users to specify
the static resource hostname when creating the server object.
We also observed cases where developers add or remove
optional parameters in order to minimize the impact of break-
ing changes. Listing 1 shows a real example in TensorFlow,
where developers intended to rename the parameter value
of tf.nn.avg_pool to input. To minimize the risk of this
change, they first added an optional alias input for value and
delegated its value to the new alias. Then after a few releases,
the value parameter was finally removed. Parameter default
value addition and removal. Adding (2.6%) or removing
(2.2%) default value will turn a required parameter into
an optional one or the other way around. For example, in
Django 2.0, the default value of parameter on_delete in the
constructor of django.db.models.ForeignKey is removed
to increase awareness about cascading model deletion. In
Pandas 0.14.0, a default value None is added to the parameter
path_or_buf in method pd.DataFrame.to_csv to create a
default behavior.

(2) Parameter default value change. Changes of param-
eter default values account for a large proportion (28.9%)
of parameter changes. We inspected the release logs and
found that such changes are mainly intended for: (1) con-

sistency with external libraries or other APIs: for example,
in TensorFlow 1.11.0, the default values of the construc-
tor for tf.keras.RandomUniform are changed to match
those in Keras; (2) performance enhancement: for exam-
ple, the default value of the parameter n_estimators of
sklearn.ensemble.RandomForestClassifier is changed
from 10 to 100 in Scikit-learn 0.22 to enhance the ability
of random forest classifier; and (3) bug fixes: for exam-
ple, in Pandas 0.23.0, the default value of the parameter
convert_datetime64 is changed from True to None in
pandas.DataFrame.to_records to fix a bug.

C. Comparison with Java

As a typical dynamic programming language, Python ex-
hibits different API evolution patterns compared to Java as
mentioned above. The most distinctive difference ensues from
Python’s flexible argument passing mechanism. In the follow-
ing, we further compare the evolution of Python and Java
frameworks from the perspective of breaking changes.

1) The rate of breaking changes: Based on our dataset,
breaking changes happen much more frequently in our studied
Python frameworks than in Java frameworks as reported by
a recent study [8] (Figure 1). In addition, we observed that
breaking changes in Python frameworks could occur in any
stage of framework evolution (Figure 2).5 The high rate of
breaking changes could lead to frequent crashes of client
applications, which we will discuss shortly in Section V-B. We
further checked the release logs and commit messages of the
six frameworks and found that developers often perform break-
ing changes to make their framework light-weight, consistent,
or user-friendly. For example, in the release log of TensorFlow
2.0, developers mentioned “many backward-incompatible API

5We only present the statistics of Pandas here due to page limit. More
statistics can be found at https://doi.org/10.5281/zenodo.2756358.

84

https://doi.org/10.5281/zenodo.2756358

37.41%

40.90%

27.81%

48.30%

18.92%

47.70%

62.59%

59.10%

72.19%

51.70%

81.08%

52.30%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Java Field

Python Field

Java Method

Python Method

Java Class

Python Class

Breaking Changes Non-breaking Changes

Fig. 1. Comparison of the number of API changes in Python and Java

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

Ch

an
ge

s

Releases

Breaking Changes Non-breaking Changes

Fig. 2. # API changes in the evolution of Pandas

changes have been made to clean up the APIs and make them
more consistent.” Developers also mentioned that the focus of
TensorFlow 2.0 is “simplicity and ease of use”. Furthermore,
due to the dynamic nature and flexibility of Python, framework
developers may not easily notice or avoid breaking changes.

2) The impact of breaking changes: We also investigated
the impact of breaking changes of the six frameworks on the
5,538 client applications following the methodology of the
existing work [8]. Specifically, we analyzed how many APIs
with breaking changes (breaking APIs for short) are used by
the 5,538 projects. With static analysis, we found 3,191 such
APIs.6 The detailed breakdown is provided in Table III. We
can see that the 3,191 APIs only account for a small percentage
(0.8%) of all breaking APIs. This finding is expected because
96.4% of the breaking changes are API removals. Obviously,
developers would not often use APIs that do not exist in
a framework. We further analyzed how many of the 5,538
projects use the breaking APIs. To our surprise, we found
2,967 (53.6%) such projects. This indicates that the breaking
APIs in our studied Python frameworks might have affected a
wide range of client applications. Comparatively, such a ratio
is only 2.5% in Java [8].

Answers to RQ1: We observed 14 API evolution patterns
for Python frameworks, five of which are specific to Python
due to its language features. We also found that comparing
to Java, breaking API changes in Python frameworks
happen more frequently and have more extensive impacts.

6Static analysis provides a worse-case approximation of the impact.

TABLE III
IMPACT OF APIS WITH BREAKING CHANGES

Framework # Used Breaking APIs # Affected Projects

TensorFlow 1,519 of 337,833 (0.4%) 626 of 1,000 (62.6%)
Pandas 1,085 of 23,543 (4.6%) 621 of 1,000 (62.1%)
Scikit-learn 218 of 12,500 (1.7%) 462 of 883 (52.3%)
Flask 19 of 202 (9.4%) 57 of 1,000 (5.7%)
Django 187 of 10,879 (1.7%) 629 of 1,000 (62.9%)
Keras 163 of 6,233 (2.6%) 688 of 1,000 (68.8%)

Total 3,191 of 391,190 (0.8%) 2,967 of 5,538 (53.6%)*

* Some project used multiple frameworks as explained in Section III-B

V. COMPATIBILITY ISSUES & FIXING STRATEGIES

A. Analysis Approach

1) Keyword formulation and search: To answer RQ2, we
need to collect and analyze real compatibility issues induced
by framework API evolution and the associated fixing patches
in our selected 5,538 client applications. To ensure the quality
of the collected data, we adopted an iterative process to
formulate the search keywords. We started from keywords
related to compatibility issues and API evolution based on our
domain knowledge, which include compatibility and version.
Then we refined the keyword set based on the quality of
the resulting issues repeatedly until we obtained a sufficient
number of confirmed issues in the search results. The final
set of keywords include compatibility, version, evolution,
exception, TypeError, AttributeError, and ImportError. We
used these keywords, combined with the six names of our
selected frameworks, to search both the issue tracking systems
and commit histories of the 5,538 client applications. Note
that searching commit histories is necessary since many issues
could be fixed and committed without being documented in
the issue reports [23].

2) Manual validation: Using the above search process,
we collected 1,318 issue reports and 53,301 commits. We
manually validated each issue report and 1,066 (2%) randomly
sampled commits to find real compatibility issues induced
by the API evolution of our studied Python frameworks. We
didn’t analyze all commits because the validation required
extensive manual efforts and were very time-consuming. Fi-
nally, we obtained 409 issues from 124 issue reports and
219 commits.7 The other issue reports and commits are not
related to real compatibility issues but were retrieved because
they accidentally contain our selected keywords. The manual
validation process involved three authors. Two of them first
independently checked each issue report or commit to validate
if it is related to real issues of our concern. After independent
checking, the two authors cross-validated their results. When
disagreement happened, the third author would join the dis-
cussion and jointly make the final decision.

3) Characterizing issues: We then analyzed each of the
409 compatibility issues to understand their common symp-

7The number of issues we obtained is larger than 343 (124+219) because
developers fixed multiple issues in some commits.

85

TABLE IV
CORRELATIONS BETWEEN SYMPTOMS AND CAUSES

C1* C2 Other Total

ImportError 56 0 1 57
AttributeError 186 0 9 195
TypeError 0 116 11 127
Other Errors 12 6 8 26
Unexpected behaviors 0 1 3 4

Total 254 123 32 409
* C1 = API addition/removal or renaming/relocation. C2 = parameter changes.

toms and fixing strategies. To understand the symptoms, we
investigated the following data associated with the issues:
(1) issue reports, (2) commit messages, and (3) developers’
comments in the corresponding code. We also tried to repro-
duce some issues when we could not understand their symp-
toms from the three data sources. To understand the fixing
strategies, we primarily studied the patches of 347 issues.
We did not study the remaining issues because they were
not yet fixed at the time of this study or we failed to locate
the corresponding fixing patches. This process also involved
three authors. The methodology is similar to that of the above
manual validation step. We present our findings below.

B. Symptoms of Compatibility Issues

We observed that the compatibility issues in client applica-
tions can lead to crashes or unexpected behaviors:

Application crashes (405/409). The vast majority of our
studied issues led to unhandled exceptions, causing crashes
of client applications. This ratio is surprisingly higher than
that of the compatibility issues in other types of applications.
For example, according to a recent study of the compatibility
issues in Android applications, only 15 of the 67 compatibility
issues induced by Android API evolution led to application
crashes [5]. One possible explanation of such difference is
that unlike SPL code, Python code is not strictly checked by
a compiler before running. Therefore, severe errors such as
crashes are deferred until runtime. These 405 crashing issues
can be further classified into the following types of runtime
exceptions, many of which are specific to Python.

(1) AttributeError: 48.1% (195/405) of the crashing
issues are related to AttributeError. Such exceptions are
raised when clients refer to an attribute that is not available,
which is often caused by the removal or renaming/relocation
of that API (see Table IV). Take issue #3 of the project
variational-autoencoder [24] as an example. The application
crashed because it referenced the function kl in the mod-
ule tf.contrib.distributions, which was renamed to
kl_divergence in TensorFlow 1.2.0.

(2) TypeError: 31.4% (127/405) of the crashing issues are
related to TypeError. In Python, type checking is performed
at runtime. A TypeError is raised when the arguments are
incompatible with the parameter list. Such runtime excep-
tions are often caused by API parameter changes as shown
in Table IV. For example, in the project django-advanced-

− tf.histogram_summary(var.op.name, var)
+ tf.summary.histogram(var.op.name, var)

Listing 2. Fixing an issue by replacing with new API calls

filters [25] (issue #72), developers encountered a TypeError
when instantiating the Django class AdvancedFilter. The
reason is that a required parameter on_delete was added to
the constructor but the developers did not provide a corre-
sponding argument. The parameter reordering of tf.concat
in TensorFlow also caused a TypeError in the project color-
net [26] (issue #12).

(3) ImportError: 14.1% (57/405) of the crashing issues
are related to ImportError, which is raised when developers
try to import a nonexistent module, function, or class. Here,
we also count ModuleNotFoundError since it is a subtype
of ImportError. For example, in keras-contrib [27] (issue
#291), developers tried to import normalize_data_format
from keras.utils.conv_utils, which was removed in
Keras 2.2.1, and encountered ImportError. Such issues are
often caused by API removal, renaming, and relocation.

(4) Other Errors: The remaining 6.4% (26/405) of the
crashing issues are related to over 10 other types of runtime ex-
ceptions including ValueError, KeyError, and framework-
specific exceptions, which are not commonly observed in our
dataset. We do not further discuss them.

Unexpected behaviors (4/409). API evolution may not
change an API’s signature. For instance, in Section IV-B, we
discussed that changes can be made on the default values of
API parameters. Such subtle API changes may not crash client
applications but could lead to unexpected behaviors, which is
difficult to debug. For example, in Django 1.6.0, the default
value of the parameter default in the constructor of the
class django.db.models.BooleanField was changed from
False to None. This affected the behavior of the applica-
tion django-dynamic-scraper [28] (issue #41), which could
run properly on older Django versions when the parameter
default had the default value of False. To fix the issue,
developers explicitly provided a False value to the default
parameter when calling the API (commit 135b2ae).

C. Fixing Strategies

By studying the patches of the 347 compatibility issues, we
found that developers often adopt the following four types of
strategies when fixing the issues. These four patterns cover
only 267 patches. The remaining patches involve fixes that
are too specific to be generalized.

Replacing with new API calls (182/347). The most com-
mon fixes are simply replacing the old API, which caused
the compatibility issue, with the corresponding new API.
Listing 2 shows an example that fixed an issue in the project
Colorization.tensorflow [29] (commit bec97c5). The issue
occurred because the API tf.histogram_summary() was
relocated and renamed to tf.summary.histogram() during
the evolution of TensorFlow. While such fixes are simple
and straightforward, they do not guarantee an application’s
backward compatibility with older library versions.

86

− weight_decay = tf.mul(...)
+ try:
+ weight_decay = tf.multiply(...)
+ except AttributeError:
+ weight_decay = tf.mul(...)

Listing 3. Fixing an issue by using catching exceptions

Catching related exceptions (32/347). As discussed in
Section V-B, API evolution may crash client applications
with ImportError or AttributeError. To fix such issues,
developers often catch such exceptions and fallback to alter-
native APIs. Listing 3 shows an example fix in the project
TensorMol [30]. In the fixed version (commit b8d07db), the
developers first tried to call tf.multiply, which is available
in TensorFlow 1.0.0 and subsequent versions. If the API does
not exist, then API tf.mul, which is available in the older
versions of TensorFlow, will be invoked. An interesting finding
is that developers tend to call the preferred APIs (usually those
in newer versions) in the try clause and call the alternatives
in the except clause. This may help avoid unnecessary
computational overhead since exception handling is expensive.
In addition, this strategy ensures backward compatibility, but
it works only when an exception will be thrown, unexpected
behaviors induced by API evolution cannot be solved by it.

Altering argument passing (29/347). As mentioned in
section IV-B, parameter reordering would break the API calls
with positional arguments. To fix such issues, developers
may change from positional arguments to keyword arguments.
The first part of Listing 4 demonstrates a fix in the project
tf_classification [31] (commit df29c8c), where developers
fixed a compatibility issue caused by the parameter reordering
of tf.concat() using keyword arguments. On the other hand,
parameter renaming would break the API calls with keyword
arguments but would not affect the API calls with positional
arguments. Hence, developers may choose to use positional ar-
guments instead of keyword arguments to fix issues induced by
parameter renaming. The second part of Listing 4 shows such
a fix in the project crfasrnn_keras [32] (commit 6bfaee7),
where developers replaced keyword arguments with positional
arguments when invoking tf.nn.softmax(). This strategy
also ensures backward compatibility.

Checking library versions or API existence (24/347).
Another commonly adopted strategy is to explicitly check
the library versions before calling a target API. Listing 5
shows how Keras developer checked the TensorFlow version
to decide appropriate API invocations (commit 1de4bf1).
Listing 6 shows how Keras developers checked whether the
target API exists using hasattr before calling it (commit
aa18604). Such explicit checking requires developers to be
familiar with the evolution of the referenced library, such as
knowing the exact library version in which the target API was
changed. While this strategy ensures backward compatibility,
it may not be suitable for inexperienced developers.

While different strategies can help fix different types of
issues, we found that developers may also switch from one
fixing strategy to another to fix similar issues. Take the project

Positional arguments −> keyword arguments
− bboxes = tf.concat([...], 0)
+ bboxes = tf.concat(axis=[...], values=0)

Keyword arguments −> positional arguments
− softmax_out = tf.nn.softmax(q_values, axis=0)
+ softmax_out = tf.nn.softmax(q_values, 0)

Listing 4. Fixing issues by altering argument passing

− v = tf.SparseTensor(..., shape=sparse_coo.shape)
+ if tf_major_version >= 1:
+ v = tf.SparseTensor(..., dense_shape=...)
+ else:
+ v = tf.SparseTensor(..., shape=...)

Listing 5. Fixing an issue by checking library versions

− tf.image_summary(weight.name, w_img)
+ if hasattr(tf, ’image_summary’):
+ tf.image_summary(weight.name, w_img)
+ else:
+ tf.summary.image(weight.name, w_img)

Listing 6. Fixing API relocation by using hasattr

Mask_RCNN [33] as an example. When the compatibility issue
#566 was reported, developers replaced the call to an old API
with a call to the new one to fix the issue. We have discussed
that such a simple fix cannot guarantee backward compati-
bility. Later on, a similar issue #669 was reported, in which
backward compatibility is an important concern. As a result,
developers caught ImportError in commit 9e0997a to fix
this issue. Another example is in the project tensorlayer [34]
(commit 989c584), where developers changed from checking
library versions to catching related exceptions.

Answers to RQ2: Python framework API evolution may
cause crashes or unexcepted behaviors in client applica-
tions, including over 10 types of runtime exceptions, many
of which are specific to Python. Developers mainly adopt
four types of strategies to fix compatibility issues caused
by framework API evolution, three of which guarantee
backward compatibility while one does not.

VI. PYCOMPAT : A COMPATIBILITY ISSUE DETECTOR

Our findings in Section V-B suggest that the evolution of
Python framework APIs often leads to crashes, which severely
diminishes the reliability and usability of client applications.
Yet, it is often tedious and time-consuming for developers to
test their applications in different environments to guarantee
compatibility. This motivates us to design and implement a
tool, PYCOMPAT, based on our empirical findings, to help
Python developers automatically identify compatibility issues
in the early development phase of their projects. The API
evolution patterns summarized in Table II are atomic changes,
which are composed of a single operation. We focus on atomic
changes in our empirical study since: 1) the detection of
such changes can be fully automated, and thus the detection
approach can be applied to a large number of API changes;
2) existing studies also focus on understanding API evolution
patterns in terms of atomic changes [8], and thus we follow
such a practice to facilitate fair comparisons with them (see

87

API Knowledge
Base Extraction

Issue Detection

Library Releases API Knowledge Base

Python Source File Compatibility Issues

.PY

Fig. 3. Workflow of PYCOMPAT

Section IV-C). On the contrary, our tool is designed to detect
high-level changes, which are composed of multiple atomic
changes, due to two reasons. First, detecting atomic changes
will generate an overwhelming number of warnings for those
changes, which might not be useful to developers. Second,
detecting high-level changes can generate more succinct and
actionable reports. The following subsections present the de-
tails of PYCOMPAT and a preliminary evaluation of it.

A. Tool Design

PYCOMPAT aims to detect compatibility issues caused by
common types of breaking API changes via static analysis.
Specifically, we designed it to detect issues caused by API
renaming/relocating (ARR) and parameter renaming (PRN),
which are high-level changes composed of atomic ones such as
addition and removal operations. Currently, PYCOMPAT does
not support detecting issues caused by other high-level API
changes such as parameter reordering due to (1) the lack of
precise type information in static analysis, and (2) the low
frequency of such changes observed in our dataset.

PYCOMPAT works in two phases: API Knowledge Base
Extraction and Issue Detection (Figure 3). The first phase ana-
lyzes the releases of a framework and synthesizes a knowledge
base that models the high-level changes of framework APIs.
The second phase takes the API knowledge base as input and
performs static analysis on a given Python source file to locate
potential compatibility issues via light-weight rule checking.

1) API Knowledge Base Extraction: Given a set of library
releases, PYCOMPAT first extracts the APIs defined in each
library release as described in Section IV-A, and classifies API
changes into patterns according to the rules in Table II. With
the extracted APIs and evolution patterns, we then construct
a knowledge base KB to model high-level API changes
including ARR and PRN. Note that unlike analyzing atomic
changes, identifying the two types of high-level changes
cannot be easily automated. We need to manually inspect the
changelogs of a target framework to precisely locate renamed
methods or parameters. Finally, each entry in KB encodes
the detailed information of an evolved API, including (1) the
names and parameter lists of the API before and after the
evolution, (2) the mappings between renamed parameters, and
(3) the release version in which the API evolved.

2) Issue Detection: The detection algorithm takes two
inputs: (1) KB, the API knowledge base built in the first phase
of PYCOMPAT, and (2) AST , the Abstract Syntax Tree of the
Python source file under analysis. Firstly, we walk through

the AST to obtain the call sites of the APIs defined in the
framework. Then, we analyze each call site to check if it uses
an evolved API by matching the following rules:

ARR Checking Rule: This rule helps find compatibility
issues caused by API renaming/relocation. An ARR rule is
matched if there is an entry r in KB such that (1) r describes
the renaming/relocation of an API, and (2) the API name of the
call site matches the API name in r before or after evolution.

PRN Checking Rule: This rule helps find compatibility
issues caused by parameter renaming. An PRN rule is matched
if there is an entry r in KB such that (1) r describes the
parameter renaming of an API, (2) the API name of the call
site matches the API name in r,8 and (3) there are keyword
arguments passed to renamed parameters encoded in r.

When there is a rule matched at a call site, we further check
if developers have already taken actions to avoid compatibility
issues. Specifically, we perform backward slicing at the call
site and analyze the obtained slice to check if there exist any
potential fixes. We conservatively consider that a fix exists if
any of these conditions is satisfied: (1) the call site is wrapped
by a try...except statement, (2) there exist statements in
the slice that check the framework versions, and (3) there exist
statements in the slice that check API existence. If there is no
sign of potential fixes, a warning will be reported.

B. Preliminary Evaluation
In this section, we evaluate PYCOMPAT with real-world

projects that use TensorFlow. We focus on TensorFlow applica-
tions because it is one of the most popular Python frameworks.
It has tens of releases and a large number of client applications.

For the evaluation, we manually prepared an API knowledge
base containing 45 entries that encode the evolution details of
TensorFlow APIs. We randomly selected 10 client projects
of TensorFlow on GitHub which has: (1) more than 50
stars, (2) commits, active issues or pull requests in the last
six months, and (3) no explicit requirement of TensorFlow
versions in its description page. These constraints help select
popular and active projects that are likely to have compatibility
issues. Table V lists our selected projects.

We ran PYCOMPAT on the latest revision of the 10 projects.
After performing compatibility analysis at 7,000+ call sites of
TensorFlow APIs in these projects (Column 4 of Table V),
PYCOMPAT raised 156 and 105 warnings induced by ARR
and PRN, respectively. We then manually checked all the 261
warnings and classified them into true positives (TP) and false
positives (FP). Columns 5-8 of Table V report the results.

In total, 231 detected warnings are true positives (precision
is 88.5%). The 30 false positives all come from one project.
We checked its code and found that developers created two
directories to maintain two versions of the project, one for old
TensorFlow APIs and the other for new TensorFlow APIs. That
means they are aware that TensorFlow API evolution could
incur compatibility issues in their project and have already
prevented such issues, although using an unusual strategy.
Hence, our detected issues are not useful to them.

8In our definition, API names remain unchanged in parameter renaming.

88

TABLE V
EXPERIMENTAL SUBJECTS AND CHECKING RESULTS

Repository Name Revision # Stars # API Call Sites # ARR # PRN # TP # FP Issue ID(s)

ck-tensorflow [35] c1ff67d 77 446 3 0 3 0 114 (Fixed)
keras [36] 9d33a02 40,945 612 1 1 2 0 12710 (Ignored)
tensorflow-yolov3 [37] 970cd22 783 340 7 8 15 0 117 (Fixed), 136 (Pending)
tensorflow-101 [38] aa80965 1,041 2,650 42 21 63 0 19 (Fixed), 21 (Fixed)
tensorflow-playground [39] 349db97 71 272 12 0 12 0 8 (Pending)
TF-and-DL-Tutorial [40] 1b70523 2,234 798 31 0 1 30 38 (Fixed)
Valified_Code_Classify [41] 9043f4a 77 69 1 0 1 0 3 (Pending)
spotify-tensorflow [42] 5f607ad 79 129 0 1 1 0 193 (Confirmed)
R2CNN_FPN_Tensorflow [43] 0dc1b20 317 2,097 59 71 130 0 66 (Ignored), 68 (Ignored)
tensorflow-triplet-loss [44] fc69836 522 180 0 3 3 0 41 (Confirmed)

Total 7,593 156 105 231 30 13

We further reported the 231 true warnings to the developers
of the corresponding projects. We grouped similar warnings
into 13 issue reports in order not to overwhelm developers. The
issue report IDs are provided in the last column of Table V.
We also proposed patches in some reports to help developers
fix the issues. At the time of paper submission, developers
have replied to 10 of the 13 issue reports. The 78 issues
mentioned in 7 reports have been confirmed. Moreover, de-
velopers quickly fixed 74 issues mentioned in 5 reports within
one week after acknowledging the issues. There are 3 reports
containing issues that developers did not want to confirm or
fix. We checked their comments on the issue reports and found
that it is mainly because these developers do not want their
projects to be compatible with older versions of libraries. For
example, Keras developers made this comment on our issue
report: “Keras generally only supports TF versions going back
2 releases. We’re currently on 1.13, so we should only support
TF down to 1.11. If you need to use an older version of
TensorFlow, you should downgrade Keras as well”.

Based on the above findings, we can see that PY-
COMPAT can find compatibility issues that are helpful to
developers. This demonstrates the usefulness of our work.

VII. DISCUSSIONS

A. Threats to Validity

1) Subject Selection: Our selected Python frameworks and
client applications might not be representative. To mitigate the
threat, we selected frameworks from three different domains.
These frameworks are also widely used by developers. For
client applications, we selected a large number of diverse
projects (5,538 in total) built on the selected frameworks.

2) APIs Change Pattern Classification: Due to the fact
that Python is dynamically typed, we cannot get the type
information without running the programs. Therefore, our
classification does not include changes that are related to type,
such as the type change of the default value for parameters.

3) Issue Selection: We detected compatibility issues using
self-defined keywords, which may limit the diversity and
representativeness of the collected issues. To mitigate the
threat, we adopted a process to iteratively discover and refine

keywords based on the quality of the retrieved data. It is pos-
sible that some Python-specific keywords (e.g., TypeError)
in our keyword set would lead to a biased dataset (e.g., many
of the collected issues are caused by TypeError). However,
we observed that our selected keyword set also helped collect
many compatibility issues caused by other types of errors
(e.g.,ValueError, KeyError, etc.), which demonstrates the
generality of our collected dataset.

4) Manual Analyses: Our empirical study and evaluation
involved much manual effort, which might be subjective and
biased. To reduce the threat, multiple authors were involved to
perform independent checking and cross-validated all results.
We also released our dataset for public access and scrutiny.

B. Observations & Implications on Future Work

1) API Evolution in Different Phases: We observed that in
different phases, library API evolution may exhibit different
patterns: (1) APIs evolve more frequently between a stable
version and its subsequent unstable version, and (2) deprecated
APIs are usually removed in major version releases. Research
efforts can be spent on studying API evolution patterns in
different phases of libraries.

2) Automated Modeling of API Evolution: In this work, we
built the API evolution knowledge base when implementing
PYCOMPAT in a semi-automated way. It is interesting to
study how to automatically model the high-level changes of
Python framework API evolution. There are two outstanding
challenges. First, since Python is a DPL, there is little type
information in the code although type annotations can be
used. It is difficult to map parameters of evolved APIs without
knowing their types. Second, Python allows arbitrary keyword
arguments (i.e., written in **kwargs), which could aggregate
multiple arguments into a dictionary. Such arguments can only
be retrieved in function bodies. It is difficult to detect the
parameter list of such functions without analyzing library code.

3) Automated Patching of Compatibility Issues: Currently,
our work only focuses on detecting compatibility issues. With
our observed fixing strategies, it is promising to design tech-
niques to automatically generate patches to fix compatibility
issues based on the API evolution knowledge base.

89

4) API Evolution of Other DPL Frameworks: The frequent
evolution of DPL frameworks could induce various compati-
bility issues in client applications. In this work, we performed
an exploratory study on Python frameworks. Future work can
study frameworks in other DPLs such as JavaScript and Ruby.

VIII. RELATED WORK

A. API Evolution of Libraries

1) Understanding API Evolution & Its Impact: Des Riv-
ières [45] provided a catalog of Java API changes and dis-
cussed how to evolve APIs while maintaining compatibility
with client code. Meng et al. [46] proposed a history-based
matching approach to identifying and understanding the API
evolution of Java frameworks. Dig et al. [15] classified API
evolution in Java libraries from the perspective of refactoring.
They found that 80% of the breaking changes are API refac-
toring. Xavier et al. [8] investigated the API changes in 317
real-world Java libraries and observed a high rate of breaking
changes (27.99%), which impacted 2.54% of their clients.
Dietrich et al. [4] analyzed binary compatibility problems in
OSGi-based systems. Tao et al. [47] found that alternative API
usages could improve runtime performance and proposed a
novel approach to exploring implementations for the same task
using different APIs. Many studies also focused on specific
domains or ecosystems. For example, Wu et al. [48] analyzed
the frequency of API evolution patterns in Apache and Eclipse
ecosystem and evaluated the impact of the API evolution. Li
et al. [49] investigate web service API evolution and how
it affects client applications. McDonnell et al. [50] and Wei
et al. [5] studied the API stability and evolution in Android
frameworks and their induced issues. Most recently, Zhang et
al. [51] found that API evolution might be the root cause of
various bugs in deep learning programs. In comparison, our
work is the first to systematically study the API evolution
of dynamic language frameworks. Although we focused on
Python, our findings may be useful to future studies on the
API evolution of frameworks in other DPLs.

2) How Developers React to API Evolution: There are also
studies on how developers deal with API evolution problems.
For instance, Hora et al. [52] studied the API evolution
problems in the Pharo ecosystem and found that developers
often do not quickly react to such problems (median reaction
time is 34 days). Wei et al. [53] found that Android devel-
opers often check API levels before API invocations to avoid
compatibility issues. Similar to [53], we observed that Python
developers also check library versions when using APIs to
avoid compatibility issues. However, we also observed other
strategies, such as altering parameter passing, to deal with
compatibility issues, which are specific to Python applications.

B. API Evolution Supporting Techniques

1) API Misuses Detection: Researchers have proposed var-
ious techniques to tame issues caused by misusing APIs. For
example, FicFinder [5] and CiD [54] can help detect potential
compatibility issues induced by misusing platform-specific or
frequently evolved APIs on Android. MUTAPI [55] discovers

API misuses patterns via mutation analysis. In our work, we
also proposed PYCOMPAT, a tool to detect compatibility issues
by searching usages of evolved APIs. Although the goal of the
tools is similar, PYCOMPAT are specifically designed to handle
different issues for Python applications.

2) API Migration Support: API migration is important but
challenging. Several studies proposed techniques or trans-
formation languages to automate API migration [56]. For
example, Henkel et al. [57] proposed an Eclipse plugin called
CatchUp! to record how developers refactor API usages and
then replay the refactoring on other client code to ease API mi-
gration. Muller et al. [58] proposed a framework, Coccinelle,
to automate required code modifications (semantic patches) to
support the collateral evolution of Linux libraries and their
dependent service-specific code. SemDiff [59] recommends
replacements for framework methods that are accessed by
a Java program but deleted during evolution. More recently,
Wang et al. [60] proposed a declarative language, PATL, to
support transforming programs between different versions of
the same API. Comparing to our work, the existing work
mostly focused on the ability to match multiple related API
calls but do not build a knowledge base for API evolution.
Furthermore, the proposed language and frameworks rely on
the static type system of the target language, and cannot be
easily applied to DPLs such as Python.

IX. CONCLUSION

In this paper, we performed an empirical study to understand
the API evolution in Python frameworks. Via analyzing the
API changes in 288 releases of six popular Python frame-
works, we found 14 common API evolution patterns in Python
frameworks, including five patterns that are not observed
in Java frameworks. We also investigated 409 compatibility
issues in Python applications, which were induced by API
evolution of the six frameworks. We found common symptoms
and causes of the issues and observed four strategies that
developers often use to fix compatibility issues. Based on our
empirical study, we designed and implemented PYCOMPAT,
a tool that can automatically detect compatibility issues in
Python applications. Experiments on 10 real-world projects
show that PYCOMPAT can effectively detect compatibility
issues that are of concern to developers.

In our future work, we plan to enhance the API change ex-
traction algorithm (e.g., recognizing and unifying API aliases
caused by mapping) and study more Python frameworks to
characterize their API evolution. We also plan to automate
the API knowledge base extraction process of PYCOMPAT to
make our technique more practical.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (Grant Nos. 61932021, 61802164, and
61922003) and the Program for University Key Laboratory of
Guangdong Province (Grant No. 2017KSYS008).

90

REFERENCES

[1] “Tiobe index for october 2019.” [Online]. Available: https://www.tiobe.
com/tiobe-index/

[2] “Pypl popularity of programming language.” [Online]. Available:
http://pypl.github.io/PYPL.html

[3] “The incredible growth of python.” [Online]. Available: https:
//stackoverflow.blog/2017/09/06/incredible-growth-python/

[4] J. Dietrich, K. Jezek, and P. Brada, “Broken promises: An empirical
study into evolution problems in java programs caused by library
upgrades,” in 2014 Software Evolution Week - IEEE Conference
on Software Maintenance, Reengineering, and Reverse Engineering,
CSMR-WCRE 2014, Antwerp, Belgium, February 3-6, 2014, 2014,
pp. 64–73. [Online]. Available: https://doi.org/10.1109/CSMR-WCRE.
2014.6747226

[5] L. Wei, Y. Liu, and S. Cheung, “Taming android fragmentation:
characterizing and detecting compatibility issues for android apps,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, Singapore, September 3-7,
2016, 2016, pp. 226–237. [Online]. Available: https://doi.org/10.1145/
2970276.2970312

[6] “Stack overflow.” [Online]. Available: https://stackoverflow.com
[7] “Github - the world’s leading software development platform.” [Online].

Available: https://github.com
[8] L. Xavier, A. Brito, A. C. Hora, and M. T. Valente, “Historical

and impact analysis of API breaking changes: A large-scale
study,” in IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering, SANER 2017, Klagenfurt, Austria,
February 20-24, 2017, 2017, pp. 138–147. [Online]. Available:
https://doi.org/10.1109/SANER.2017.7884616

[9] “Dynamic programming language (wikipedia).” [Online]. Available:
https://en.wikipedia.org/wiki/Dynamic_programming_language

[10] “Python documentation.” [Online]. Available: https://docs.python.org/3/
tutorial/controlflow.html#default-argument-values

[11] Y. Wang, M. Wen, Z. Liu, R. Wu, R. Wang, B. Yang, H. Yu,
Z. Zhu, and S. Cheung, “Do the dependency conflicts in my project
matter?” in Proceedings of the 2018 ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena
Vista, FL, USA, November 04-09, 2018, 2018, pp. 319–330. [Online].
Available: https://doi.org/10.1145/3236024.3236056

[12] “pypa/virtualenv: Virtual python environment builder.” [Online].
Available: https://github.com/pypa/virtualenv

[13] “pip - the python package installer.” [Online]. Available: https:
//pip.pypa.io

[14] “Pypi - the python package index.” [Online]. Available: https://pypi.org/
[15] D. Dig and R. E. Johnson, “How do apis evolve? A story of

refactoring,” Journal of Software Maintenance, vol. 18, no. 2, pp.
83–107, 2006. [Online]. Available: https://doi.org/10.1002/smr.328

[16] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[17] F. Chollet et al., “Keras,” https://keras.io, 2015.
[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[19] W. McKinney, “Data structures for statistical computing in python,” in
Proceedings of the 9th Python in Science Conference, S. van der Walt
and J. Millman, Eds., 2010, pp. 51 – 56.

[20] “pallets/flask: The python micro framework for building web
applications.” [Online]. Available: https://github.com/pallets/flask

[21] “django/django: The web framework for perfectionists with deadlines.”
[Online]. Available: https://github.com/django/django

[22] D. Merkel, “Docker: Lightweight linux containers for consistent
development and deployment,” Linux J., vol. 2014, no. 239, Mar. 2014.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2600239.2600241

[23] Y. Liu, J. Wang, L. Wei, C. Xu, S.-C. Cheung, T. Wu, J. Yan, and
J. Zhang, “DroidLeaks: A Comprehensive Database of Resource Leaks
in Android Apps,” Empirical Software Engineering, pp. 325–334, 2019.

[24] “altosaar/variational-autoencoder: Variational autoencoder implemented
in tensorflow and pytorch.” [Online]. Available: https://github.com/
altosaar/variational-autoencoder

[25] “modlinltd/django-advanced-filters: Add advanced filtering abilities
to django admin.” [Online]. Available: https://github.com/modlinltd/
django-advanced-filters

[26] “pavelgonchar/colornet: Neural network to colorize grayscale images.”
[Online]. Available: https://github.com/pavelgonchar/colornet

[27] “keras-team/keras-contrib: Keras community contributions.” [Online].
Available: https://github.com/keras-team/keras-contrib

[28] “holgerd77/django-dynamic-scraper: Creating scrapy scrapers via the
django admin interface.” [Online]. Available: https://github.com/
holgerd77/django-dynamic-scraper

[29] “shekkizh/colorization.tensorflow: Image colorization using cnns
in tensorflow.” [Online]. Available: https://github.com/shekkizh/
Colorization.tensorflow

[30] “jparkhill/tensormol: Tensorflow + molecules = tensormol.” [Online].
Available: https://github.com/jparkhill/TensorMol

[31] “visipedia/tf_classification: Training, evaluation and testing code for
image classification using tensorflow.” [Online]. Available: https:
//github.com/visipedia/tf_classification

[32] “sadeepj/crfasrnn_keras: Crf-rnn keras/tensorflow version.” [Online].
Available: https://github.com/sadeepj/crfasrnn_keras

[33] “matterport/mask_rcnn: Mask r-cnn for object detection and instance
segmentation on keras and tensorflow.” [Online]. Available: https:
//github.com/matterport/Mask_RCNN

[34] “tensorlayer/tensorlayer: Deep learning and reinforcement learning
library for scientists.” [Online]. Available: https://github.com/
tensorlayer/tensorlayer

[35] “ctuning/ck-tensorflow: Collective knowledge components for tensor-
flow.” [Online]. Available: https://github.com/ctuning/ck-tensorflow

[36] “keras-team/keras: Deep learning for humans.” [Online]. Available:
https://github.com/keras-team/keras

[37] “Yunyang1994/tensorflow-yolov3: pure tensorflow implement of yolov3
with support to train your own dataset.” [Online]. Available:
https://github.com/YunYang1994/tensorflow-yolov3

[38] “burness/tensorflow-101: learn code with tensorflow.” [Online].
Available: https://github.com/burness/tensorflow-101

[39] “wangz10/tensorflow-playground: Implementations of some deep
learning models using tensorflow with scikit-learn like apis.” [Online].
Available: https://github.com/wangz10/tensorflow-playground

[40] “Creatcodebuild/tensorflow-and-deeplearning-tutorial: A tensorflow &
deep learning online course i taught in 2016.” [Online]. Available: https:
//github.com/CreatCodeBuild/TensorFlow-and-DeepLearning-Tutorial

[41] “Symphonypy/valified_code_classify: Python3/tensorflow.” [Online].
Available: https://github.com/SymphonyPy/Valified_Code_Classify

[42] “spotify/spotify-tensorflow: Provides spotify-specific tensor-
flow helpers.” [Online]. Available: https://github.com/spotify/
spotify-tensorflow

[43] “yangxue0827/r2cnn_fpn_tensorflow: R2cnn: Rotational region cnn
based on fpn (tensorflow).” [Online]. Available: https://github.com/
yangxue0827/R2CNN_FPN_Tensorflow

[44] “omoindrot/tensorflow-triplet-loss: Implementation of triplet loss
in tensorflow.” [Online]. Available: https://github.com/omoindrot/
tensorflow-triplet-loss

[45] J. d. Rivières, “Evolving java-based apis,” Oct 2007. [Online].
Available: http://wiki.eclipse.org/Evolving_Java-based_APIs

[46] S. Meng, X. Wang, L. Zhang, and H. Mei, “A history-based matching
approach to identification of framework evolution,” in Proceedings of
the 34th International Conference on Software Engineering, ser. ICSE
’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 353–363. [Online].
Available: http://dl.acm.org/citation.cfm?id=2337223.2337265

[47] Y. L. Z. X. S. Q. Yida Tao, Shan Tang, “How do api selections affect
the runtime performance of data analytics tasks?” in Proceedings of
the 34th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’19, 2019.

[48] W. Wu, F. Khomh, B. Adams, Y. Guéhéneuc, and G. Antoniol,
“An exploratory study of api changes and usages based on
apache and eclipse ecosystems,” Empirical Software Engineering,
vol. 21, no. 6, pp. 2366–2412, 2016. [Online]. Available: https:
//doi.org/10.1007/s10664-015-9411-7

91

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
http://pypl.github.io/PYPL.html
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://doi.org/10.1109/CSMR-WCRE.2014.6747226
https://doi.org/10.1109/CSMR-WCRE.2014.6747226
https://doi.org/10.1145/2970276.2970312
https://doi.org/10.1145/2970276.2970312
https://stackoverflow.com
https://github.com
https://doi.org/10.1109/SANER.2017.7884616
https://en.wikipedia.org/wiki/Dynamic_programming_language
https://docs.python.org/3/tutorial/controlflow.html#default-argument-values
https://docs.python.org/3/tutorial/controlflow.html#default-argument-values
https://doi.org/10.1145/3236024.3236056
https://github.com/pypa/virtualenv
https://pip.pypa.io
https://pip.pypa.io
https://pypi.org/
https://doi.org/10.1002/smr.328
https://www.tensorflow.org/
https://keras.io
https://github.com/pallets/flask
https://github.com/django/django
http://dl.acm.org/citation.cfm?id=2600239.2600241
https://github.com/altosaar/variational-autoencoder
https://github.com/altosaar/variational-autoencoder
https://github.com/modlinltd/django-advanced-filters
https://github.com/modlinltd/django-advanced-filters
https://github.com/pavelgonchar/colornet
https://github.com/keras-team/keras-contrib
https://github.com/holgerd77/django-dynamic-scraper
https://github.com/holgerd77/django-dynamic-scraper
https://github.com/shekkizh/Colorization.tensorflow
https://github.com/shekkizh/Colorization.tensorflow
https://github.com/jparkhill/TensorMol
https://github.com/visipedia/tf_classification
https://github.com/visipedia/tf_classification
https://github.com/sadeepj/crfasrnn_keras
https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN
https://github.com/tensorlayer/tensorlayer
https://github.com/tensorlayer/tensorlayer
https://github.com/ctuning/ck-tensorflow
https://github.com/keras-team/keras
https://github.com/YunYang1994/tensorflow-yolov3
https://github.com/burness/tensorflow-101
https://github.com/wangz10/tensorflow-playground
https://github.com/CreatCodeBuild/TensorFlow-and-DeepLearning-Tutorial
https://github.com/CreatCodeBuild/TensorFlow-and-DeepLearning-Tutorial
https://github.com/SymphonyPy/Valified_Code_Classify
https://github.com/spotify/spotify-tensorflow
https://github.com/spotify/spotify-tensorflow
https://github.com/yangxue0827/R2CNN_FPN_Tensorflow
https://github.com/yangxue0827/R2CNN_FPN_Tensorflow
https://github.com/omoindrot/tensorflow-triplet-loss
https://github.com/omoindrot/tensorflow-triplet-loss
http://wiki.eclipse.org/Evolving_Java-based_APIs
http://dl.acm.org/citation.cfm?id=2337223.2337265
https://doi.org/10.1007/s10664-015-9411-7
https://doi.org/10.1007/s10664-015-9411-7

[49] J. Li, Y. Xiong, X. Liu, and L. Zhang, “How does web service api
evolution affect clients?” in 2013 IEEE 20th International Conference
on Web Services, June 2013, pp. 300–307.

[50] T. McDonnell, B. Ray, and M. Kim, “An empirical study of API
stability and adoption in the android ecosystem,” in 2013 IEEE
International Conference on Software Maintenance, Eindhoven, The
Netherlands, September 22-28, 2013, 2013, pp. 70–79. [Online].
Available: https://doi.org/10.1109/ICSM.2013.18

[51] Y. Zhang, Y. Chen, S. Cheung, Y. Xiong, and L. Zhang, “An empirical
study on tensorflow program bugs,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2018, Amsterdam, The Netherlands, July 16-21, 2018, 2018, pp.
129–140. [Online]. Available: https://doi.org/10.1145/3213846.3213866

[52] A. C. Hora, R. Robbes, N. Anquetil, A. Etien, S. Ducasse, and
M. T. Valente, “How do developers react to API evolution? the
pharo ecosystem case,” in 2015 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2015, Bremen, Germany,
September 29 - October 1, 2015, 2015, pp. 251–260. [Online].
Available: https://doi.org/10.1109/ICSM.2015.7332471

[53] L. Wei, Y. Liu, S.-C. Cheung, H. Huang, X. Lu, and X. Liu, “Under-
standing and Detecting Fragmentation-Induced Compatibility Issues for
Android Apps,” IEEE Transactions on Software Engineering, 2018.

[54] L. Li, T. F. Bissyandé, H. Wang, and J. Klein, “Cid: automating
the detection of api-related compatibility issues in android apps,”
in Proceedings of the 27th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2018, Amsterdam, The
Netherlands, July 16-21, 2018, 2018, pp. 153–163. [Online]. Available:
https://doi.org/10.1145/3213846.3213857

[55] M. Wen, Y. Liu, R. Wu, X. Xie, S. Cheung, and Z. Su, “Exposing
library API misuses via mutation analysis,” in Proceedings of the
41st International Conference on Software Engineering, ICSE 2019,

Montreal, QC, Canada, May 25-31, 2019, 2019, pp. 866–877. [Online].
Available: https://doi.org/10.1109/ICSE.2019.00093

[56] M. Lamothe and W. Shang, “Exploring the use of automated
API migrating techniques in practice: an experience report on
android,” in Proceedings of the 15th International Conference on
Mining Software Repositories, MSR 2018, Gothenburg, Sweden,
May 28-29, 2018, 2018, pp. 503–514. [Online]. Available: https:
//doi.org/10.1145/3196398.3196420

[57] J. Henkel and A. Diwan, “Catchup!: capturing and replaying
refactorings to support API evolution,” in 27th International Conference
on Software Engineering (ICSE 2005), 15-21 May 2005, St.
Louis, Missouri, USA, 2005, pp. 274–283. [Online]. Available:
https://doi.org/10.1145/1062455.1062512

[58] G. Muller, Y. Padioleau, J. L. Lawall, and R. R. Hansen,
“Semantic patches considered helpful,” SIGOPS Oper. Syst. Rev.,
vol. 40, no. 3, pp. 90–92, Jul. 2006. [Online]. Available: http:
//doi.acm.org/10.1145/1151374.1151392

[59] B. Dagenais and M. P. Robillard, “Semdiff: Analysis and
recommendation support for API evolution,” in 31st International
Conference on Software Engineering, ICSE 2009, May 16-24,
2009, Vancouver, Canada, Proceedings, 2009, pp. 599–602. [Online].
Available: https://doi.org/10.1109/ICSE.2009.5070565

[60] C. Wang, J. Jiang, J. Li, Y. Xiong, X. Luo, L. Zhang, and
Z. Hu, “Transforming Programs between APIs with Many-to-
Many Mappings,” in 30th European Conference on Object-Oriented
Programming (ECOOP 2016), ser. Leibniz International Proceedings
in Informatics (LIPIcs), S. Krishnamurthi and B. S. Lerner,
Eds., vol. 56. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2016, pp. 25:1–25:26. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2016/6119

92

https://doi.org/10.1109/ICSM.2013.18
https://doi.org/10.1145/3213846.3213866
https://doi.org/10.1109/ICSM.2015.7332471
https://doi.org/10.1145/3213846.3213857
https://doi.org/10.1109/ICSE.2019.00093
https://doi.org/10.1145/3196398.3196420
https://doi.org/10.1145/3196398.3196420
https://doi.org/10.1145/1062455.1062512
http://doi.acm.org/10.1145/1151374.1151392
http://doi.acm.org/10.1145/1151374.1151392
https://doi.org/10.1109/ICSE.2009.5070565
http://drops.dagstuhl.de/opus/volltexte/2016/6119

	Introduction
	Background
	The Python Programming Language
	Library Referencing and Evolution
	Breaking Changes and Non-Breaking Changes

	Subject Selection
	Framework Selection
	Client Applications Selection

	Framework API Evolution Patterns
	API Extraction Approach
	Evolution Patterns
	Comparison with Java
	The rate of breaking changes
	The impact of breaking changes

	Compatibility Issues & Fixing Strategies
	Analysis Approach
	Keyword formulation and search
	Manual validation
	Characterizing issues

	Symptoms of Compatibility Issues
	Fixing Strategies

	PyCompat : A Compatibility Issue Detector
	Tool Design
	API Knowledge Base Extraction
	Issue Detection

	Preliminary Evaluation

	Discussions
	Threats to Validity
	Subject Selection
	APIs Change Pattern Classification
	Issue Selection
	Manual Analyses

	Observations & Implications on Future Work
	API Evolution in Different Phases
	Automated Modeling of API Evolution
	Automated Patching of Compatibility Issues
	API Evolution of Other DPL Frameworks

	Related Work
	API Evolution of Libraries
	Understanding API Evolution & Its Impact
	How Developers React to API Evolution

	API Evolution Supporting Techniques
	API Misuses Detection
	API Migration Support

	Conclusion
	References

