
Characterizing and Detecting Inefficient Image
Displaying Issues in Android Apps

Wenjie Li†, Yanyan Jiang†?, Chang Xu†?, Yepang Liu‡, Xiaoxing Ma†, Jian Lü†
†State Key Lab for Novel Software Technology, Nanjing University, Nanjing, China

‡Shenzhen Key Laboratory of Computational Intelligence, Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen, China

wenjielinju@gmail.com, {jyy, changxu}@nju.edu.cn, liuyp1@sustc.edu.cn, {xxm, lj}@nju.edu.cn

Abstract—Mobile applications (apps for short) often need
to display images. However, inefficient image displaying (IID)
issues are pervasive in mobile apps, and can severely impact
app performance and user experience. This paper presents an
empirical study of 162 real-world IID issues collected from 243
popular open-source Android apps, validating the presence and
severity of IID issues, and then sheds light on these issues’
characteristics to support future research on effective issue
detection. Based on the findings of this study, we developed
a static IID issue detection tool TAPIR and evaluated it with
real-world Android apps. The experimental evaluations show
encouraging results: TAPIR detected 43 previously-unknown IID
issues in the latest version of the 243 apps, 16 of which have been
confirmed by respective developers and 13 have been fixed.

Index Terms—Android app, inefficient image displaying, per-
formance, empirical study, static analysis

I. INTRODUCTION

Media-intensive mobile applications (apps for short) must
carefully implement their CPU- and memory-demanding im-
age displaying procedures. Otherwise user experiences can be
significantly affected [1]. For example, inefficiently displayed
images can lead to app crash, UI lagging, memory bloat, or
battery drain, and finally make users abandon the concerned
apps even if they are functionally perfect [2].

In this paper, we empirically found that mobile apps often
suffer from inefficient image displaying (IID) issues in which
the image displaying code contains non-functional defects that
cause performance degradation or even more serious conse-
quences, such as the app crashing or no longer responding.
Despite the fact that existing work has considered IID issues
to some extent (within the scope of general performance
bugs [3]–[7] or image displaying performance analysis [8],
[9]), there still lacks a thorough study of IID issues for
mobile apps, particularly for source-code-level insights that
can be leveraged in program analysis for automated IID issue
detection or even fixing.

To facilitate deeper understanding of IID issues, this paper
presents an empirical study towards characterizing IID issues
in mobile apps. We carefully localized 162 IID issues (in 36
apps) from 1,826 issue reports and pull requests in 243 well-
maintained open-source Android apps in F-Droid [10]. Useful
findings include:

? Corresponding authors.

1) Most IID issues cause app crash (30.9%) or slowdown
(45.1%), and handling lots of images and/or large images
are the primary causes. This finding is useful for devel-
oping reasonable workloads and test oracles for dynamic
manifestation and detection of IID issues in Android apps.

2) A few root causes have covered most (90.1%) exam-
ined IID issues: non-adaptive image decoding (45.1%),
repeated and redundant image decoding (26.5%), UI-
blocking image displaying (11.1%), and image leakage
(7.4%). We also extracted sufficient conditions for local-
izing these issues in an Android app’s execution trace,
which would benefit both dynamic and static analyzers.

3) Certain anti-patterns can be strongly correlated with
IID issues: image decoding without resizing (23.4%),
loop-based redundant image decoding (22.2%), image
decoding in UI event handlers (11.1%), and unbounded
image caching (4.3%). This finding lays the foundation
of our pattern-based lightweight static IID issue detection
technique.

To the best of our knowledge, this paper presents the first
systematic empirical study of IID issues in real-world Android
apps, and provides key insights on understanding, detection,
and fixing of IID issues.

Based on these findings, we design and implement TAPIR,
a static analyzer for IID issue detection in Android apps.
We experimentally validated the effectiveness of TAPIR, and
applied it to the latest versions of all 243 studied apps. TAPIR
reported surprisingly encouraging results that 43 previously-
unknown IID issues in 16 apps (24 of the 43 issues are
from eight apps that previously suffered from IID issues)
were manually confirmed as true positives and reported to
respective developers, among which 16 have been confirmed
by the developers and 13 were fixed.

In summary, our paper makes the following contributions:
1) We conducted a systematic empirical study of IID issues

in real-world Android apps. The findings provide key
insights to facilitate future research, and our dataset of
IID issues are publicly available for follow-up studies1.

2) Based on our empirical findings, we devised a static
pattern-based IID issue detection technique, TAPIR, and
validated its effectiveness using real-world Android apps.

1https://github.com/IID-dataset/IID-issues.

https://github.com/IID-dataset/IID-issues


The rest of this paper is organized as follows. Section II
introduces the background knowledge of image displaying in
Android apps. Section III presents the methodology of our
empirical study for IID issues in Android apps and discusses
our empirical findings. Section IV presents the design and
implementation of our TAPIR tool. Section V experimentally
evaluates TAPIR with popular and open-source Android apps
and discusses its results and the threats to validity. Section VI
presents related work, and Section VII concludes this paper.

II. BACKGROUND

Image displaying, although seemingly straightforward, is
actually a non-trivial process in Android and can be subject
to various performance defects. In this section we introduce
the image displaying process in Android apps and its related
inefficient image displaying (IID) issues.

A. Image Displaying in Android Apps

The process of image displaying in Android consists of the
following four phases, which are all performance-critical and
energy-consuming [1]:
• Image loading for reading the external representation

of an image (from an external source, e.g., a URL,
file, or input stream) and decoding the image into an
Android-recognizable in-memory object (e.g., Bitmap,
Drawable, and BitmapDrawable).

• Image transformation for post-decoding image process-
ing, in which a decoded image object is resized, reshaped,
or specially processed for fitting in a designated applica-
tion scenario (e.g., a cropped and enhanced thumbnail).

• Image storage for managing a decoded and/or trans-
formed image object, particularly in a cache, for later
rendering. Caching can also save precious CPU/GPU
cycles for image decoding and transformation, but it
would incur significant space overhead.

• Image rendering for physically displaying an image ob-
ject on an Android device’s screen. Images are rendered
natively by the Android framework [11].

B. Inefficient Image Displaying (IID)

Image displaying is both computation- and memory-
intensive. Displaying a full resolution image on a high-
resolution display may cost:
• hundreds of milliseconds of CPU time [5], which can

cause an observable lag, and
• tens of megabytes of memory [12], which can drain an

app’s limited memory.
Therefore, the efficiency of image displaying on CPU- and

memory-constrained mobile devices is of critical importance.
Inefficiently displayed images can severely impact app func-
tions or user experiences:

1) Decoding images in the UI thread can significantly de-
grade an app’s performance, causing its slow responsive-
ness or even “app-not-responding” anomalies2.

2https://github.com/wordpress-mobile/WordPress-Android/issues/5777.

2) Image objects not being freed in time can consume
significantly large amounts of memory, leading to
OutOfMemoryError and unexpected app terminations3.

3) Improperly stored (cached) images may cause repeatedly
(and unnecessary) processing of the same images, result-
ing in meaningless performance degradation and energy
waste4.

We thus define an inefficient image displaying (IID) issue as
a non-functional defect in an Android app’s image displaying
implementation (e.g., improper image decoding) that causes
performance degradation (e.g., GUI lagging or memory bloat)
and/or even more serious consequences (e.g., app crash).

To better understand and detect IID issues, in this paper
we conduct an empirical study to systematically investigate
IID issues in Android apps, and work for automated IID issue
detection technique based on our empirical study results.

III. EMPIRICAL STUDY

A. Methodology

Our empirical study follows a methodology similar to those
adopted in existing work [13], [14] for characterizing real-
world Android app bugs. We extracted a set of 162 real-world
IID issues by keyword search and manual inspection from 243
well-maintained open-source Android apps of realistic usage
in F-Droid [10] using the process in Section III-A1. We further
analyzed these issues by the methodology in Section III-A2.

1) Dataset collection: We conducted the empirical study
based on a collection of IID issues from Android apps.
Figure 1 illustrates the overall issue collection process.

Identifying IID-
related  IReps/PRs Collecting IID issuesApp selection

243 apps
1,826 IReps/PRs 
in 48 apps

Issue tracking 
systems

GitHub 
repositories

ps
1,
in

162 IID 
issues in 

36 Android 
apps

Issue tracking 
systems

GitHub 
rerrrr positories

e trackt kikI GitGGGGiG ububbbbb

Fig. 1. The IID issue collection process

App selection. We selected all 243 Android apps from 1,093
randomly selected Android apps in F-Droid [10] as our study
subject, meeting the following selection criteria:

1) Open-source: also hosted on GitHub with an issue track-
ing system for tracing potential IID issues.

2) Well-maintained: having over 100 code commits in the
corresponding GitHub repository.

3) Of realistic usage: having over 1,000 downloads on the
Google play market.

Identifying IID-related issue reports and pull requests.
An app user’s issue report (IRep for short) usually denotes

3https://github.com/AnimeNeko/Atarashii/issues/6.
4https://github.com/TeamNewPipe/NewPipe/pull/166.

https://github.com/wordpress-mobile/ WordPress- Android/issues/5777
https://github.com/AnimeNeko/Atarashii/issues/6
https://github.com/TeamNewPipe/NewPipe/pull/166


a manifested app bug from end users. An app developer’s
pull request (PR for short), on the other hand, possibly
contains the developer’s perspective on a concerned app bug.
Therefore, we collected both of them in the empirical study.
We first identified potential IID-related IReps and PRs in the
GitHub repositories by a keyword search in their issue tracking
systems using the following keywords5:
image bitmap decode display
picture photograph show thumbnail

Any IRep or PR that contains one of the above keywords
in its title, body, or comment was then manually inspected to
further confirm whether it indeed fixed any performance bug:

1) The IRep’s/PR’s text complains about the performance
degradation or more serious consequences (e.g., app
crash) when performing image displaying.

2) There is evidence that an image-related bug is fixed
(e.g., the concern issue report is associated with a fixing
commit ID or an accepted fixing patch), and the same
issue has never been re-reported in the following three
months6.

After the manual inspection, we obtained a total of 1,826
IReps/PRs in 48 apps, which are from 22,023 IReps/PRs
returned by the keyword search from the initially selected 243
Android apps.

Collecting IID issues. We then inspected the GitHub commits
associated with the 1,826 IReps/PRs to decide whether they
correspond to IID issues. For each code patch (may patch sev-
eral places or files in the concerned repository, and a commit
may also contain several patches) for fixing a particular image-
displaying-related performance bug that is clearly documented
in the corresponding IReps/PR, we consider this patch related
to a new IID issue. As such, for each decided IID issue, we
obtained a patch for fixing it and its textual descriptions in the
corresponding IRep/PR, which would suffice for our further
manual inspection in order to answer research questions in
this study.

Finally, we collected a total of 162 IID issues (distributed
in 71 IReps/PRs) in 36/243 (14.8%) studied Android apps.
These numbers (162 issues and 14.8% coverage) suggest that
IID issues are definitely not rare, and can be considered as
common in practice and deserving an in-depth study. The
dataset of 162 IID issues will be made publicly available.

2) Analyzing the IID issues: The analysis of collected IID
issues is organized around the following research questions:

RQ1. What are the triggering conditions and consequences of
IID issues?

RQ1 concerns user-perceived manifestation condition and
consequences of IID issues, and thus is answered by inspecting
the textual information in the titles, bodies, or comments of

5These keywords are general natural language words related to image
displaying. They come from existing research work, e.g., [5], [6] and our
empirical study experience.

6For those issues that do not contain any explicit link to any patch, we
conducted a bisect on their GitHub repositories to find potential fixing patches
by following the methodology of existing work [15].

the collected IReps and PRs. Recall that since all collected
issues contain clear consequence descriptions, we only need
to archive them and extract their triggering conditions through
these descriptions. We can further confirm the correctness of
the description by analyzing their patches.

RQ2. What are the root causes of IID issues?
The root causes are extracted by a hypothetical execution

of these apps. For most IID issues containing known IID-
inducing triggering conditions (displaying lots of images or
large images), we take these known conditions as their input.
For the other IID issues, we infer their triggering conditions
(one image or lots images) by analyzing their patches. We
reason about the (hypothetical) execution traces by examining
call sequences and arguments of image displaying APIs, and
extract characteristics of these traces as root causes of the IID
issues.

RQ3. Are there common anti-patterns for IID issues?
We inspect the patches of investigated to find whether there

are common anti-patterns correlated to IID issues. We are
particularly interested in code patterns which can facilitate
lightweight static lint-like checkers.

B. Empirical Study Results

1) RQ1: What are the triggering conditions and conse-
quences of IID issues??: We answer RQ1 by manual inspec-
tion of textural information in the collected IReps/PRs, which
contains descriptions about IID issues from the perspective of
app users. The overall results are summarized as the follows:

Finding 1. Most IID issues can cause app crash (30.9%)
or slowdown (45.1%). In the issues with clearly de-
scribed triggering conditions, handling lots of images
(60.0%) and/or large images (are 41.6%) are the major
causes.

This finding is consistent with our intuitions: IID issues
typically occur in media-intensive apps, and may result in
severe impact on user experiences7. Their consequences can
be categorized as follows:
• App crash (50/162, 30.9%) is the most severe conse-

quence, which is mostly caused by OutOfMemoryError

in the memory allocation for storing a large image8.
• App slowdown (73/162, 45.1%) is the most common

consequence, which includes GUI lagging9 and slow
image displaying10.

• Memory bloat (23/162, 14.2%) in which an apps’ con-
sumed memory keeps growing but does not lag or crash
the app yet11, although the app may unnecessarily stop
background activities and affect user experiences.

7An IID issue may have multiple consequences or causes, and thus the sum
of the concerned percentages may exceed 100%.

8https://github.com/the-blue-alliance/the-blue-alliance-android/issues/588.
9https://github.com/nikclayton/android-squeezer/issues/171.
10https://github.com/kontalk/androidclient/issues/789.
11https://github.com/romannurik/muzei/issues/383.

https://github.com/the-blue-alliance/the-blue-alliance-android/issues/588
https://github.com/nikclayton/android-squeezer/issues/171
https://github.com/kontalk/androidclient/issues/789
https://github.com/romannurik/muzei/issues/383


• Abnormal image displaying (14/162, 8.6%) occurs when
an app’s memory is insufficient for decoding large im-
ages but does not cause app crash yet, which may also
trigger frequent GC (Garbage Collection) and impact user
experiences.

• Application not responding (2/162, 1.2%) is the extreme
case of app slowdown and is usually caused by an app
performing time-consuming image displaying operations
in the UI thread12.

• Others (13/162, 8.0%) can also result in bad user ex-
periences but their IReps/PRs lack further details for
inspection.

We also found that 125 of the 162 studied IID issues contain
explicit descriptions about their triggering conditions. All
these triggering conditions concern to handling large images
(50/125, 40.0%), handling lots of images (73/125, 58.4%),
or both (2/125, 1.6%). For these cases, inefficient handling
of large/lots of images mostly cause app crash/slowdown,
respectively.

These findings, although seemingly straightforward, provide
actionable hints for reasonable workload designs and possible
test oracles for the automated detection of IID issues. Simply
feeding an app with reasonably large-amount and large-size
images would suffice as an IID testing adversary, and test
oracles can also be accordingly designed around the studied
consequences.

2) RQ2: What are the root causes of IID issues?: To
further understand on the source-code level how IID issues
have occurred, we manually inspected the issues’ associated
patches to recognize their root causes. The overall results are
summarized as follows:

Finding 2. Only a few root causes cover most
(90.1%) inspected IID issues: non-adaptive image de-
coding (45.1%), repeated and redundant image decoding
(26.5%), UI-blocking image displaying (11.1%), and
image leakage (7.4%).

First, this finding reveals that existing performance bug
detectors may have covered only a narrow range of IID issues
and it is worthwhile to develop IID-specific analysis tech-
niques. For example, the existing pattern-based analysis [3]
detects only part bitmap resizing in the UI thread, the existing
resource leakage analysis [16] can be expanded to manual
image resource management (the tool itself does not cover),
existing image displaying performance analysis [9] can help
developers improve the rendering performance of slow image
displaying.

Besides, this finding also suggests that static program
analysis techniques concerning these particularly recognized
root causes may be effective for detecting IID issues, as long as
one can semantically model the image displaying process in an
app’s source code, or find particular code anti-patterns which
correlate to these root causes (studied later in Section III-B3).

12https://github.com/ccrama/Slide/issues/1639.

The root causes of IID issues are illustrated using the
execution traces of an app based on a simplified data-flow
model. Suppose that executing an app yields a sequence of
chronologically sorted events E = {e1, e2, . . . , em}. Some
events may be the results of image-related API invocations.
Each of such events is associated with an image object imw×h
in the heap of resolution w × h. We use the notation e → e′

to denote that event e′ is data-dependent on event e, i.e., the
result of e′ is computed directly or indirectly involving the
result of e.

Non-adaptive image decoding. Nearly half (73/162, 45.1%)
of the issues are simply caused by directly decoding a large
image without considering the actual size of the widget
that displays this image, resulting in significant performance
degradation and/or crash. A typical example is to decode a full-
resolution image for merely displaying a thumbnail13, which
can waste thousands times of CPU cycles and memory.

For a non-adaptive image decoding case, there exists an
image object imw×h associated with event edec ∈ E which
is the result of an image decoding API invocation, and im
is finally displayed by event edisp ∈ E, which is an image
displaying API invocation and edec → edisp. However, the
actual displayed image im ′w′×h′ has w > w′ ∧ h > h′.

Repeated and redundant image decoding. Quite a few
(43/162, 26.5%) issues are due to improper storage (partic-
ularly, caching) for images such that the same images maybe
repeatedly and redundantly decoded, causing unnecessarily
performance degradation and/or battery drain. An indicator of
this type of IID issues is that there are two image decoding
API invocation events edec, e′dec ∈ E whose associated images
im and im ′ are identical, i.e., imw×h = im ′w×h.

UI-blocking image displaying. Some (18/162, 11.1%) issues
are caused by decoding images in the UI thread in an app,
even if this has been explicitly discouraged in the Android
documentation [1]. A typical example is to decode large
images in the UI thread14, which causes UI blocking, leading
obviously slow responsiveness.

Image leakage. Some (12/162, 7.4%) issues are caused by
memory (by image objects) leakage such that inactive images
cannot be effectively garbage-collected. Memory leakage is
another major cause of OutOfMemoryError and has been
extensively studied in the existing literatures [17], [18].

3) RQ3: Are there common anti-patterns for IID issues?:
Following the analysis of root causes in Section III-B2, we
inspected the source code of concerned IID issues to identify
whether IID issues are related to any particular code anti-
patterns. The overall results are summarized as follows:

13https://github.com/opendatakit/collect/issues/1237.
14https://github.com/kontalk/androidclient/issues/789.

https://github.com/ccrama/Slide/issues/1639
https://github.com/opendatakit/collect/issues/1237
https://github.com/kontalk/androidclient/issues/789


1 public class AztecImageLoader implements Html.ImageGetter {
2 public void loadImage(String url, ..., int maxWidth) {
3 - Bitmap bitmap = BitmapFactory.decodeFile(url);
4 + int orientation = ImageUtils.getOrientation(..., url);
5 + byte[] bytes = ImageUtils.createThumbnail(Uri.parse(url)

, maxWidth, ...);
6 + Bitmap bitmap = BitmapFactory.decodeByteArray(bytes, 0,

bytes.length);
7 BitmapDrawable bitmapDrawable = new BitmapDrawable(

context.getResources(), bitmap);
8 callbacks.onImageLoaded(bitmapDrawable);
9 } }

Fig. 2. Image decoding without resizing in WordPress issue 5701 (simplified)

1 public class PodcastListAdapter extends ArrayAdapter<
GpodnetPodcast> {

2 public View getView(int position, ...) {
3 GpodnetPodcast podcast = getItem(position);
4 Glide.with(convertView.getContext())
5 .load(podcast.getLogoUrl())
6 .placeholder(R.color.light_gray)
7 - .diskCacheStrategy(DiskCacheStrategy.SOURCE)
8 + .diskCacheStrategy(DiskCacheStrategy.ALL)
9 .into(holder.image);

10 }}

Fig. 3. Loop-based redundant image decoding in AntennaPod pull request
1071 (simplified)

Finding 3. Certain anti-patterns are strongly correlated
to IID issues: image decoding without resizing (23.4%),
loop-based redundant image decoding (22.2%), image
decoding in UI event handlers (11.1%), and unbounded
image caching (4.3%). Together with additional bug
types mentioned by existing research [9], [16] (29.1%),
90.1% of the examined IID issues could be identified.

These anti-patterns are a firm basis for developing effective
static analysis techniques for detecting IID issues, which are
further discussed in Section IV and evaluated in Section V.

1 public class PreviewActivity extends AppCompatActivity {
2 protected void onCreate() {
3 mediaUri = media.getUrl();
4 loadImage(mediaUri); }
5 private void loadImage(String mediaUri) {
6 - byte[] bytes = ImageUtils.createThumbnail(Uri.parse(

mediaUri), ...);
7 + new LocalImageTask(mediaUri, size).executeOnExecutor(

AsyncTask.THREAD_POOL_EXECUTOR);
8 - Bitmap bmp = BitmapFactory.decodeByteArray(bytes, ...);
9 } }

10 + private class LocalImageTask extends AsyncTask<...> {
11 + protected Bitmap doInBackground(Void... params) {
12 + byte[] bytes = ImageUtils.createThumbnailFromUri(...,

Uri.parse(mMediaUri);
13 + return BitmapFactory.decodeByteArray(bytes, ...);
14 } }
15 public class ImageUtils {
16 public static byte[] createThumbnail(Uri imageUri, ...) {
17 Bmp = BitmapFactory.decodeFile(imageUri, ...);
18 } }

Fig. 4. Image decoding in UI event handlers in WordPress issue 5777
(simplified)

1 public class CoverAdapter<T> extends ArrayAdapter<T> {
2 public View getView(...) {
3 a = objects.get(position));
4 ImageView cover = v.findViewById(R.id.coverImage);
5 imageDownloader.download(a.getImageUrl(), cover);
6 }
7 public class ImageDownloader {
8 public void download(String url,ImageView imageView) {
9 String filename = String.valueOf(url.hashCode());

10 File f = new File(getCacheDirectory(imageView.getContext
()), filename);

11 Bitmap bt = null;
12 bt = (Bitmap)imageCache.get(f.getPath());
13 if (bt == null){
14 bt = BitmapFactory.decodeFile(f.getPath());
15 - imageCache.put(..., bt);
16 + imageCache.put(..., new WeakReference<Bitmap>(bt));
17 imageView.setImageBitmap(bt);
18 }}}

Fig. 5. Unbounded image caching in Atarashii issue 6 (simplified)

Image decoding without resizing. IID issues are likely to
present if an image potentially from external sources (like
network or file system) is decoded with its original size.
Furthermore, external-source image displaying is specific as a
few APIs, which can be detected by a pattern-based analysis.

Surprisingly, this simple anti-pattern already covers 38/162
(23.4%) of all studied IID issues. Fig. 2 gives such an example,
in which displaying the thumbnail of a network image may
unnecessarily consume about 128MB of memory in decoding
(using the image decoding API decodeFile() at Line 3) and
result in app crash. One developer later fixed this issue by re-
sizing the image’s resolution according to the actual UI widget
used for displaying it (by invoking createThumbnail() for
resizing images) to reduce unnecessary memory consumption
(Lines 4–6).

Loop-based redundant image decoding. IID issues also
frequently occur when an image is unintentionally decoded
multiple times in a loop. Particularly, Android apps often
use some common components (e.g., ListView, GridView, and
RecyclerView) to display a scrolling list of images, and these
components are all associated with callback methods, which
can be frequently invoked.

This anti-pattern covers 36/162 (22.2%) of all
studied IID issues. Fig. 3 gives an example, in which
the method getView() of the Android ListView

adapter was frequently invoked during the Android
app execution (Line 2). Glide is a popular third-
party library used for image displaying and its method
diskCacheStrategy(DiskCacheStrategy.SOURSE)

specifies that its decoded image read from
podcast.getLogoUrl() will not be cached and reused
(Lines 5 and 7). In this issue, when its user browses a list
of images and slides up and down, a lot of images would be
decoded repeatedly and result in high unnecessary runtime
overhead, leading to GUI lagging. One developer later fixed
this issue by modifying DiskCacheStrategy.SOURSE to
DiskCacheStrategy.ALL (Lines 7–8). Then Glide can
cache and reuse its decoded images, avoiding GUI lagging.



TABLE I
STATIC IID ANTI-PATTERN RULES FOR IID ISSUE-INDUCING APIS.

# Issue-inducing API Anti-pattern rule

1 decode{File, FileDescriptor, Stream,
ByteArray, Region}

(Image decoding without resizing) An external image is decoded with a null value of
BitmapFactory.Options, or the fields in the option satisfy inJustDecodeBounds =
0 and inSampleSize ≥ 1.

2 decode{File, FileDescriptor, Stream,
ByteArray, Region},
create{FromPath, FromStream},
Glide.diskCacheStrategy

(Loop-based redundant image decoding) An external image is decoded (directly or indirectly) in
getView, onDraw, onBindViewHolder, getGroupView, getChildView. However,
if the developer explicitly stores decoded images in a cache (e.g., using LruCache.put), we
do not consider this case as IID.

3 Glide.load,
Glide.diskCacheStrategy

(Loop-based redundant image decoding) An external image is decoded (directly or indirectly) in
getView, onDraw, onBindViewHolder, getGroupView, getChildView. However,
if the developer explicitly sets the argument of Glide.diskCacheStrategy to be
DiskCacheStrategy.ALL, we do not consider this case as IID.

4 decode{File, FileDescriptor, Stream,
ByteArray, Region},
create{FromPath, FromStream},
setImage{URL, ViewUri}

(Image decoding in UI event handlers) An external image is decoded but is not invoked in
an asynchronous method: overridden Thread.run, AsyncTask.doInBackground, or
IntentService.onHandleIntent.

5 decode{File, FileDescriptor, Stream,
ByteArray, Region},
create{FromPath, FromStream}

(Unbounded image caching) An external image is decoded and added to an image cache by
LruCache.put(), but there is no subsequent invocation to LruCache.evictAll() or
LruCache.remove().

6 universalimageloader.core.ImageLoader.
getInstance().displayImage

(Unbounded image caching) There exists method invocation to
ImageLoaderConfiguration.Builder.{memoryCache, diskCache}, but
there is no subsequent invocation to clearMemoryCache or removeFromCache.

7 Glide.load (Unbounded image caching) Caching images by Glide.diskCacheStrategy with
DiskCache Strategy.{SOURCE, RESULT, ALL}, but there is no subsequent invoca-
tion to clearDiskCache.

Image decoding in UI event handlers. Image decoding in the
UI thread also contributes to a significant amount of studied
IID issues, which are found to invoke (directly or indirectly)
image decoding APIs in an UI event handler.

This anti-pattern covers 18/162 (11.1%) of all studied IID
issues. Fig. 4 gives such an example, in which a big image
read from a local location was decoded in the UI thread
and caused the concerned app to run slowly (similar to the
code snippet example of Image decoding without resizing’s
in Fig. 2). In this issue, two methods createThumbnail()

and decodeByteArray() are used to decode an image read
from a URL site mediaUri (Lines 6 and 8) in method
loadImage(), which was invoked by a callback method
onCreate(), which was then invoked in the UI thread. This
caused the situation that the image decoding was actually in
the UI thread and resulted the UI blocking. To fix this issue,
one developer later moved the image decoding to a background
thread (Lines 7 and 10–13).

Unbounded image caching. Finally, an incorrectly imple-
mented unbounded cache, in which a pool of decoded images
is maintained but no image can be released, is another source
of IID issues, since the ever-increasing cache size would cause
memory bloat or OutOfMemoryError.

This anti-pattern covers 7/162 (4.3%) of all studied IID
issues. Fig. 5 gives such an example, in which an app crashed
because of OutOfMemoryError after its user browsed many
images. The cause is that the app’s image cache imageCache

was wrongly implemented such that it gathered all decoded
images without any image releasing. This made the app’s
memory consumption keep increasing and quickly exceed an
Android device’s memory bound (Line 15). Its developer later

fixed this issue by adding a soft reference in the image cache
so that the cached images could be correctly released when
memory usage was tight (Line 16).

IV. STATIC DETECTION OF IID ISSUES

We proposed a static IID issue detector, TAPIR, based on
a set of anti-pattern rules extracted from our empirical study
results. This section describes the design (in Section IV-A)
and implementation (in Section IV-B) of TAPIR.

A. IID Issue Anti-pattern Rules

By further inspecting the empirical study results and IID
issue cases, we observed that most IID issues are correlated
with image decoding APIs concerning external images, which
are essentially a small portion of all image decoding APIs.

In particular, only the nine following Android [19] official
APIs are correlated with IID15:
decodeFile decodeFileDescriptor decodeStream
decodeByteArray setImageURI decodeRegion
createFromPath createFromStream setImageViewUri

We also observed two popular third-party APIs (APIs in-
voking third-party library functionalities, not APIs used inside
third-party libraries), which are associated with at least two
apps in the studied IID issues:
universalimageloader.core.ImageLoader.
getInstance().displayImage

Glide.load

We call the above eleven image decoding and third-party
APIs issue inducing APIs. IID issues can occur when these
APIs are invoked under issue-inducing rules, which consist of

15setImageURI and setImageViewUri both decode and display
an image.



API invocation sequence and/or parameter value combinations.
These issue-inducing rules are characterized in Table I, which
are matched against in the TAPIR static analyzer.

B. The TAPIR Static Analyzer

We implemented the pattern-and-rule based static analyzer
on top of Soot [20]. TAPIR takes an Android app binary (apk)
file as input and uses dex2jar [21] to obtain a set of Java
bytecode files. It then builds the app’s context-insensitive call
graph, with a few implicit method invocation relations being
added, which are used to check rule #4:

1) The methods of AsyncTask.execute and AsyncTask.

doInBackground in the same class have an implicit
invocation relationship.

2) The methods of Thread.start and Thread.run in the
same class should have an implicit invocation relation-
ship.

Then TAPIR checks each potential issue-inducing API in-
vocation site (IS for short) against the anti-pattern rules in
Table I using standard program analysis techniques. For each
IS, we can thus obtain: (1) the data-flow of method parameters
by a backward slicing, and (2) the usages of decoded image
objects by a forward slicing. In particular, TAPIR checks the
anti-pattern rules as follows:

1) Rule #1 (image decoding without resizing) is checked by
analyzing the data-flow of the Option parameter, and a
warning is raised if there lacks the Option parameter or
its value satisfies the condition specified in Table I.

2) Rule #2 and #3 (loop-based redundant image decoding)
are equivalent to checking the call graph reachability
between the loop-related method invocations and the IS.
Furthermore, TAPIR also checks whether there is any
data flow between the decoded image and cache-related
functions or argument (in particular, LruCache.put,
DiskCacheStrategy.All ) to exclude non-IID cases.

3) Rule #4 (image decoding in UI event handlers) is another
case of checking the reachability between the IS and
method invocations of Thread.run, AsyncTask.DoIn
Background, or IntentService.onHandleIntent.

4) Rules #5, #6, and #7 (unbounded image caching) follow
the same pattern of checking whether a series of desig-
nated method invocations are reachable in the call graph.

For each IS matching at least one anti-pattern rule, an
inefficient image display warning is generated, which can be
further validated by the respective app developer.

V. EVALUATION

In this section, we present the experimental setup (Sec-
tion V-A) and results (Sections V-B and V-C) for evaluating
TAPIR with: (1) a set of studied IID issues with issue-inducing
apks available, and (2) the latest version of all studied 243
apps, followed by a threat analysis (Section V-D).

A. Experimental Setup

To validate the effectiveness of TAPIR, we collected the
apk archives of all studied apps that have historical apks
available (particularly, the apks exactly correspond to our ear-
lier IReps/PRs in our earlier empirical study). This collection
process led to a total of 19 confirmed IID issues from nine
Android apps, which were used as a ground truth to evaluate
whether TAPIR can successfully detect the concerned IID
issues. These numbers (19 and 9) seem not large, and it is true
that in theory one should be able to compile each IID issue’s
corresponding app’s source code for experiments. However,
in practice the dependencies of the concerned Android apps
could not be easily resolved, and some large apps failed for
compilation due to their stale dependencies. To reduce the
possible bias that can be caused by our manual modifications
to the apps’ dependencies, we chose for experiments only
those apps whose apks are available corresponding to the
studied IID issues and do not suffer from any dependency
issue.

Besides, to further evaluate TAPIR’s capability of detecting
real-world IID issues, we applied it to the latest versions16 of
all the 243 Android apps used in the empirical study to see
whether TAPIR can detect previously unknown IID issues. For
each TAPIR’s reported IID issue, we manually inspected it for
confirmation. We submitted the issues confirmed by us to their
respective GitHub issue tracking systems for final validation
by responsible developers.

In the IID issue reporting process, as most IID issues
detected by TAPIR (in an anti-pattern way) are obvious and
easy to fix, we did not attach respective patches or open
pull requests. We let app developers judge the validity of our
reported issues on their own, rather than potentially misleading
them by trivial patches. We also obtained some interesting
findings, which will be presented later.

Note that in the experiments we applied TAPIR only to
analyze the image displaying code of the main logics in the
selected apps, i.e., skipping the parts related to third-party
libraries, which are out of the apps’ local source trees. We
conducted all experiments on a commodity PC with an Intel
Core i7-6700 processor and 16GB RAM.

B. Effectiveness Validation Results

The overall evaluation results are shown in TABLE II. All
evaluated 19 IID issues belong to three anti-patterns. TAPIR
should either correctly detect an IID issue as an anti-pattern
instance (i.e., true positive, TP), or fail to detect it (i.e.,
false negative, FN). The results show that TAPIR correctly
identified all the 19 IID issues without any false negative
report. Although we have difficulties in evaluating TAPIR
against all studied IID issues as explained earlier, we have
tried our best to reduce potential bias and the results may
reflect the effectiveness of TAPIR to some extent.

We note that in practice TAPIR may possibly detect previ-
ously unknown IID issues in these app versions. However, we

16The latest apk build is always available on F-Droid.



TABLE II
EFFECTIVENESS VALIDATION RESULTS. EACH KNOWN IID ISSUE IS EITHER A TRUE POSITIVE (TP) OR A FALSE NEGATIVE (FN).

App Name (Category, Downloads) Revision(s) LOC #IID (IRep/PR ID) AP1 AP2 AP3 AP4 TP FN

OpenNoteScanner [22] (Education, 10K+) d34135e 2.7K 2 (#12) 2 0 0 0 2 0
Subsonic [23] (Multimedia, 500K+) 68496f6 23.8K 1 (#299) 0 1 0 0 1 0

WordPress [24] (Internet, 5M+) 1a8fa65, 8429f0a 95.8K 2 (#5290, #5777) 1 0 1 0 2 0
PhotoAffix [25] (Multimedia, 10K+) 3d8236e 1.4K 2 (#5) 2 0 0 0 2 0

Kontalk [26] (Internet, 10K+) 3f2d89d, 9185a80 19.6K 3 (#234, #269, #789) 2 0 1 0 3 0
OneBusAway [27] (Navigation, 500K+) 9f6feea 15.7K 2 (#730) 2 0 0 0 2 0

NewPipe [28] (Multimedia, 10K+) 4df4f68 3.5K 5 (#166) 0 5 0 0 5 0
MoneyManagerEx [29] (Money, 100K+) dcf4b87 63.8K 1 (#938) 1 0 0 0 1 0

BlueAlliance [30] (Education, 10K+) c081671 31.4K 1 (#588) 1 0 0 0 1 0

Total 19 11 6 2 0 19 0

Columns AP1–AP4 respectively denote the number of studied IID issues categorized as a specific anti-pattern.

are unable to examine them in this part of the evaluation due
to the lack of a ground truth of all IID issues in these apps’
historical versions. Still, we conducted such examination on
the latest versions of all 243 studied apps as our second part
of evaluation.

C. Applying TAPIR in Practice

1) Evaluation Results and Developers’ Feedback: Applying
TAPIR to the latest version of the 243 apps returned 45 anti-
pattern warnings in 16 apps. We manually inspected each
warning and categorized it either as a real IID issue (i.e., true
positive, TP) or a spurious warning (i.e., false positive, FP).
For each TP, we also reported it to its responsible developers.
The overall results are listed in TABLE III.

43 of 45 warnings were manually confirmed to be true
instances of anti-patterns, achieving an anti-pattern discovery
precision of 95.6%. For the FP case of Qkstms in which
an image is decoded by decodeByteArray() without re-
sizing, such an image is, however, not from an external
source. TAPIR failed to analyze the Options parameter of
decodeByteArray which contains resized geometries, and
thus conservatively reported it as an IID issue. The FP in
Owncloud is also due to the limitation of static analysis:
displayed images are from a disk cache, which stores already
resized images.

We enclosed the 43 issues into 20 issue reports, and
submitted them to respective developers (with descriptions of
the issues and associated anti-patterns) for their judgement on
the validity of these anti-pattern-based IID issues. The last
column in Table III shows the reported IRep IDs. So far,
we have received feedback from the developers on 27 issues.
The remaining 16 reported IID issues are still pending (their
concerned apps may no longer be under active maintenance).

Among the issues with feedback, 16/27 (59.3%) were
confirmed as real performance threats, and 13 of the 16 IID
issues (81.3%) have already been fixed by developers. This
indicates that TAPIR can indeed detect quite a few new IID
issues that affect the performance in real-world Android apps.
This results also practically validates the effectiveness of the
summarized anti-pattern rules in our empirical study.

For the remaining 11 IID issues, developers held various
conservative attitudes as discussed below:

1) Most developers rejecting our reports thought that the
performance impact might be negligible, and would only
be convinced if we can provide further evidence about the
performance degradation. For example, Aphotomanager’s
developers acknowledged that their app may encounter
performance degradation in some cases, but should be
sufficiently fast and thus currently do not plan to fix them.

2) Some developers acknowledged the reported issues, but
they claimed to have higher-priority tasks than perfor-
mance optimization.

Later we shall see how developers have overlooked the
severity of our reported IID issues, and in fact seemingly
minor IID issues can indeed cause poor app experience. These
results suggest that the future work along this line may focus
on systematic generation of testing workloads for manifesting
IID issues. Note that we could not have obtained such these
findings if we attached trivial patches in the IReps, since
developers would be inclined to accept free (and obviously
correct) patches for better performance.

2) Real-world IID Issue Cases: WordPress. The first case
is from WordPress, which is one of the most popular blogging
apps. TAPIR identified two anti-pattern instances of image
decoding without resizing and thus one issue report was
composed. However, the app’s developers did not realize the
severity of our reported issue, and marked it as low priority.

Two months later, a user reported an image-related bug
that WordPress crashed when loading a large image. The
developers then made extensive efforts in diagnosing this
issue, and proposed several fixes. However, twenty days later,
another user encountered a similar problem with the same
triggering condition. The developers once again attempted to
diagnose its root cause, but did not reach a clear verdict17.

For this interesting case, we applied TAPIR to the latest
version of WordPress and detected one previously detected
and two new IID issues, which all belong to the anti-pattern of
image decoding without resizing. We reported all three issues

17https://github.com/wordpress-mobile/WordPress-Android/issues/5701.

https://github.com/wordpress-mobile/WordPress-Android/issues/5701


TABLE III
LIST OF 43 PREVIOUSLY UNKNOWN IID ISSUES FOUND BY APPLYING TAPIR TO THE LATEST VERSIONS OF THE 243 STUDIED APPS.

App Name (Category, Downloads) Revision LOC AP1 AP2 AP3 AP4 Submitted Issue Reports

Newsblur [31] (Reading, 50K+) 535b879 20.1K 1 1 1 0 #977
WordPress [24] (Internet, 5M+) 30ff305 95.8K 4 0 0 0 #5232, #5703partially-fixed/rejected

Seadroid [32] (Internet, 50K+) f5993bd 37.9K 1 0 3 1 #616, #617, #766
MPDroid [33] (Multimedia, 100K+) 9b0a783 20.5K 1 0 0 0 #837

Aphotomanager [34] (Multimedia, 1K+) 9343d84 12.4K 0 1 1 0 #74
Conversations [35] (Internet, 10K+) 1c31b96 38.0K 0 2 0 0 #2198fixed

Owncloud [36] (Internet, 100K+) 1443902 49.1K 3(1) 2 1 0 #1862
OpenNoteScanner [22] (Education, 10K+) 2640785 3.5K 0 1 0 0 #69

Geopaparazzi [37] (Navigation, 10K+) 71fd81e 89.9K 2 0 0 0 #387
Passandroid [38] (Reading, 1M+) 1382c6a 6.6K 3 0 0 0 #136
4pdaclient [39] (Internet, 1M+) a637156 41.9K 0 1 1 0 #25fixed

DocumentViewer [40] (Reading, 500K+) a97560f 49.6K 0 1 2 0 #233
Kiss [41] (Theming, 100K+) 9677dd1 5.1K 0 0 1 0 #570fixed

Bubble [42] (Reading, 10K+) 9f1e06c 3.5K 1 0 0 0 #47
Qksms [43] (Communication, 100K+) c54c1cc 55.3K 2(1) 2 2 0 #718fixed, #719fixed

Photoview [44] (Demo, 10K+) 6c227ee 2.1K 0 1 0 0 #478

Total 18(2) 12 12 1

An italic app name denotes it previously suffered from IID issues. Columns AP1–AP4 respectively denote the number of detected issues related to each
anti-pattern. Numbers in a bracket are false positives. In the last column, bold/stroke-out issues are explicitly confirmed/rejected by the developers, and
the remaining ones are open issues.

and the developers quickly fixed two of them in three days18.
After fixing these TAPIR’s reported issues, similar image-
related performance issues have never been reported again
since July 2017 until the day this paper was written.

This case suggests that providing consequence verification
may make developers more active in dealing with our reported
IID issues. In addition, IID issues can be more complicated
than one expected. Developers may have overlooked the actual
difficulty of diagnosing such issues, and ad-hoc fixings may
not be efficient in addressing IID issues.

KISS. The second case is from KISS, an Android app launcher
with searching functionalities, the consequences of whose
suffered IID issue might have also been overlooked by its
developers. TAPIR detected the anti-pattern of loop-based
redundant image decoding in KISS, and thus we reported
this issue to its developers19. Unfortunately, the developers
explicitly rejected our proposal due to the concern that they
believe that the performance impact would be minor and KISS
should be kept simple and lightweight.

Interestingly, a year and a half later, one of KISS users
encountered and complained a show image displaying prob-
lem20. Then the developers noticed this and decided that this
is truly due to our mentioned IID issue. So they quickly fixed
this issue. This encouraging result suggests that pattern-based
program analysis can be naturally effective for defending
against practical IID issues in Android apps.

D. Threats to Validity

We analyze potential threats to the validity of our empirical
study and experimental conclusions about TAPIR.

18Developers consider one report as false positive because they have control
of the external image size.

19https://github.com/Neamar/KISS/issues/570.
20https://github.com/Neamar/KISS/issues/1054.

Subject selection. Our empirical study is based on 162
IID issues from 243 open-source Android apps, which, al-
though having a not-small number, may not be completely
representative of all IID issues in practice. Nevertheless, we
collected these IID issues from well-maintained popular open-
source Android apps covering diverse categories to reduce
such threats. Furthermore, the evaluation of TAPIR shows that
these issues indeed helped detect both previously known and
unknown IID issues in practice.

Limitations of TAPIR. TAPIR is lightweight (lacking the full
path sensitivity) and identifies only the extracted code anti-
patterns. Therefore, it may report spurious warnings (false
positives) or miss certain anti-patterns (false negatives). We
intentionally design TAPIR to be simple, and the evaluation
already demonstrates its effectiveness in detecting IID issues.
One future work is to develop more sophisticated static and/or
dynamic analyses to more precisely detect IID issues.

Custom implementation of image displaying. As mentioned
earlier, this work does not consider the source code in third-
party libraries used by studied Android apps, which could
be another source of IID issues. Developers may also have
used ad-hoc implementations for image displaying, causing
obstacles to our pattern-based analysis. This aspect of IID
issue detection can be a potential future direction.

VI. RELATED WORK

Performance has become a major concern for mobile app
developers and has been extensively studied in our community.
In this section, we briefly summarize and discuss existing
literatures on this concern.

Understanding performance issues in mobile apps. Under-
standing performance issues is of critical importance before
tackling them. Huang et al. [45] identified several important

https://github.com/Neamar/KISS/issues/570
https://github.com/Neamar/KISS/issues/1054


factors that may impact user-perceived network latencies in
mobile apps. Liu et al. [3] studied the characteristics of
Android app performance issues and identified their com-
mon patterns. These findings can support performance issue
avoidance, testing, debugging, and analysis for Android apps.
Nejati et al. [46] performed an in-depth investigation of
mobile browser performance by pairwise comparisons between
mobile and non-mobile browsers. Huang et al. [47] conducted
a systematic measurement study to quantify user-perceived
latencies with and without background workloads. Rosen et
al. [48] investigated the benefits and challenges of using Server
Push on mobile devices for improving mobile performance.

Several studies provide some clues for understanding and
detecting IID issues as studied in this work. Wang et al. [5]
provided evidence that the response time of image decoding
can grow significantly as the image’s size increases, and thus
IID may be a significant source of performance issues, while
Carette et al. [4] discussed that large images may potentially
impact the performance of Android apps.

These studies either focus on general performance issues
in Android apps and thus provide limited insights to tackle
specific IID issues, or do not systematically investigate IID
issues in practical Android apps. To the best of our knowledge,
this paper is the first systematic empirical study of IID issues
using real-world Android apps, and provides key insights
(e.g., common anti-patterns derived from real-world issues
and patches) on understanding and detection of IID issues in
Android apps.

Diagnosing and detecting performance issues in mobile
apps. Diagnosing and detecting performance issues is the
basis of fixing and optimizing for performance issues in
mobile apps. Mantis [8] estimated the execution time for
Android apps on given inputs to identify problem-inducing
inputs that can slow down an app’s execution. ARO [49]
monitored cross-layer interactions (e.g., those between the
app layer and the resource management layer) to help dis-
close inefficient resource usage, which can commonly cause
performance degradation to Android apps. AppInsight [50]
instrumented app binaries to identify critical paths (e.g., slow
execution paths) in handling user interaction requests, so as
to disclose root causes for performance issues in mobile apps.
Panappticon [51] monitored the application, system, and kernel
software layers to identify performance problems stemming
from application design flaws, underpowered hardware, and
harmful interactions between apparently unrelated applica-
tions, and further revealed performance issues from inefficient
platform code or problematic app interactions. Nistor et al.
[52] analyzed sequences of calls to String getter methods to
understand the impact of larger inputs on a user’s perception
in Windows Phone apps. Lin et al. [53] proposed an approach,
ASYNCHRONIZER, to automatically refactor long-running
operations into asynchronous tasks. Kang et al. [54] tracked
asynchronous executions with a dynamic instrumentation ap-
proach and profiled them in a task granularity, equipping it
with low-overhead and high compatibility merits.

For the work on diagnosing and detecting IID issues, Liu
et al. [3] proposed an approach based on static analysis,
which can possibly identify one kind of IID issues: performing
bitmap resizing operations in the UI thread. Gao et al. [9]
performed two UI rendering analyses to help app developers
pinpoint rendering problems and resolve short delays. How-
ever, these pieces of work can cover only a small proportion of
IID issues studied in this paper. In our work, we proposed both
common anti-patterns and an effective static analyzer TAPIR
to detect real-world IID issues of four types.

Fixing and optimizing performance issues in mobile apps.
After performance issue detection, performance optimization
is the necessary next step. Lee et al. [55] proposed a technique
that can render speculative frames of future possible outcomes,
delivering them to the client device entire RTT ahead of
time, and recover quickly from possible mis-speculations
when they occur to mask up the network latency. Huang et
al. [47] developed a lightweight tracker to accurately identify
all delay-critical threads that contribute to the slow response
of user interactions, and build a resource manager that can
efficiently schedule various system resources including CPU,
I/O, and GPU, for optimizing the performance of these threads.
Zhao et al. [56] leveraged the string analysis and callback
control flow analysis to identify HTTP requests that should be
prefetched to reduce the network latency in Android apps. Lyu
et al. [57] rewrote the code that places database writes within
loops to reduce the energy consumption and improve runtime
performance of database operations in Android apps. Nguyen
et al. [58] reduced the application delay by prioritizing reads
over writes, and grouping them based on assigned priorities. In
our work, the detection results of TAPIR provide the location
and anti-patterns of its detected IID issues in Android apps,
which can then be used to help developers quickly fix IID
issues as our experiments and case analyses show.

VII. CONCLUSION

In this paper we empirically validated the wide existence
of inefficient image displaying (IID) issues in open-source
Android apps, and studied their root causes, manifestations,
and common anti-patterns. Based on these empirical findings,
we developed a static IID issue detector TAPIR and evaluated
it with real-world apps. The experimental evaluation shows
encouraging results: TAPIR detected both previously known
IID issues with a high accuracy and previously unknown IID
issues confirmed in practice.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous review-
ers for comments and suggestions. This work is supported
in part by National Natural Science Foundation of China
(Grants #61690204, #61802165), Science and Technology
Innovation Committee Foundation of Shenzhen (Grant No.
ZDSYS201703031748284), Program for University Key Lab-
oratory of Guangdong Province (Grant No. 2017KSYS008),
and Collaborative Innovation Center of Novel Software Tech-
nology and Industrialization, Jiangsu, China.



REFERENCES

[1] https://developer.android.com/topic/performance/graphics.
[2] Y. Zhao, M. S. Laser, Y. Lyu, and N. Medvidovic, “Leveraging program

analysis to reduce user-perceived latency in mobile applications,” in
International Conference on Software Engineering, 2018.

[3] Y. Liu, C. Xu, and S.-C. Cheung, “Characterizing and detecting perfor-
mance bugs for smartphone applications,” in Proceedings of the 36th
International Conference on Software Engineering. ACM, 2014, pp.
1013–1024.

[4] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy,
“Investigating the energy impact of Android smells,” in Proceedings of
the 24th International IEEE Conference on Software Analysis, Evolution
and Reengineering. IEEE, 2017, p. 10.

[5] Y. Wang and A. Rountev, “Profiling the responsiveness of Android
applications via automated resource amplification,” in Proceedings of the
International Conference on Mobile Software Engineering and Systems.
ACM, 2016, pp. 48–58.

[6] M. Linares-Vasquez, C. Vendome, Q. Luo, and D. Poshyvanyk, “How
developers detect and fix performance bottlenecks in Android apps,” in
IEEE International Conference on Software Maintenance and Evolution.
IEEE, 2015, pp. 352–361.

[7] Y. Liu, C. Xu, and S. Cheung, “Diagnosing energy efficiency and per-
formance for mobile internetware applications,” IEEE Software, vol. 32,
no. 1, pp. 67–75, Jan 2015.

[8] Y. Kwon, S. Lee, H. Yi, D. Kwon, S. Yang, B.-G. Chun, L. Huang,
P. Maniatis, M. Naik, and Y. Paek, “Mantis: Automatic performance
prediction for smartphone applications,” in Proceedings of the 2013
USENIX conference on Annual Technical Conference. USENIX Asso-
ciation, 2013, pp. 297–308.

[9] Y. Gao, Y. Luo, D. Chen, H. Huang, W. Dong, M. Xia, X. Liu, and
J. Bu, “Every pixel counts: Fine-grained UI rendering analysis for mo-
bile applications,” in IEEE Conference on Computer Communications.
IEEE, 2017, pp. 1–9.

[10] F-Droid: A Catalogue of Open-Source Android Apps. https://fdroid.org/.
[11] Android platform architecture. https://developer.android.com/guide/plat

form/.
[12] Loading large bitmaps efficiently. https://developer.android.com/topic/pe

rformance/graphics/load-bitmap.
[13] Y. Liu, C. Xu, S.-C. Cheung, and V. Terragni, “Understanding and

detecting wake lock misuses for Android applications,” in Proceedings
of the 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2016, pp. 396–409.

[14] J. Hu, L. Wei, Y. Liu, S.-C. Cheung, and H. Huang, “A tale of two cities:
How WebView induces bugs to Android applications,” in Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, 2018, pp. 702–713.

[15] M. Rath, J. Rendall, J. L. Guo, J. Cleland-Huang, and P. Mäder,
“Traceability in the wild: Automatically augmenting incomplete trace
links,” in Proceedings of the 40th International Conference on Software
Engineering. ACM, 2018, pp. 834–845.

[16] T. Wu, J. Liu, Z. Xu, C. Guo, Y. Zhang, J. Yan, and J. Zhang, “Light-
weight, inter-procedural and callback-aware resource leak detection for
Android apps,” IEEE Transactions on Software Engineering, vol. 42,
no. 11, pp. 1054–1076, 2016.

[17] G. Xu and A. Rountev, “Precise memory leak detection for Java software
using container profiling,” in Proceedings of the 30th international
conference on Software engineering. ACM, 2008, pp. 151–160.

[18] D. Yan, G. Xu, S. Yang, and A. Rountev, “Leakchecker: Practical
static memory leak detection for managed languages,” in Proceedings of
Annual IEEE/ACM International Symposium on Code Generation and
Optimization. ACM, 2014, p. 87.

[19] https://developer.android.com/reference/.
[20] Soot project website. http://sable.github.io/soot/.
[21] dex2jar. https://sourceforge.net/projects/dex2jar/.
[22] OpenNoteScanner. https://github.com/ctodobom/OpenNoteScanner.
[23] Subsonic. https://github.com/daneren2005/Subsonic.
[24] WordPress. https://github.com/wordpress-mobile/WordPress-Android.
[25] PhotoAffix. https://github.com/afollestad/photo-affix.
[26] Kontalk. https://github.com/kontalk/androidclient.
[27] OneBusAway. https://github.com/OneBusAway/onebusaway-android.
[28] NewPipe. https://github.com/TeamNewPipe/NewPipe.
[29] MoneyManagerEx. https://github.com/moneymanagerex/android-mone

y-manager-ex.

[30] BlueAlliance. https://github.com/the-blue-alliance/the-blue-alliance-and
roid.

[31] NewsBlur. https://github.com/samuelclay/NewsBlur.
[32] Seadroid. https://github.com/haiwen/seadroid.
[33] MPDroid. https://github.com/abarisain/dmix.
[34] Aphotomanager. https://github.com/k3b/APhotoManager.
[35] Conversations. https://github.com/siacs/Conversations.
[36] Owncloud. https://github.com/owncloud/android.
[37] Geopaparazzi. https://github.com/geopaparazzi/geopaparazzi.
[38] Passandroid. https://github.com/ligi/PassAndroid.
[39] 4pdaclient. https://github.com/slartus/4pdaClient-plus.
[40] DocumentViewer. https://github.com/PrivacyApps/document-viewer.
[41] Kiss. https://github.com/Neamar/KISS.
[42] Bubble. https://github.com/nkanaev/bubble.
[43] Qksms. https://github.com/moezbhatti/qksms.
[44] PhotoView. https://github.com/chrisbanes/PhotoView.
[45] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl,

“Anatomizing application performance differences on smartphones,” in
Proceedings of the 8th international conference on Mobile systems,
applications, and services. ACM, 2010, pp. 165–178.

[46] J. Nejati and A. Balasubramanian, “An in-depth study of mobile browser
performance,” in Proceedings of the 25th International Conference on
World Wide Web. International World Wide Web Conferences Steering
Committee, 2016, pp. 1305–1315.

[47] G. Huang, M. Xu, F. X. Lin, Y. Liu, Y. Ma, S. Pushp, and X. Liu,
“Shuffledog: Characterizing and adapting user-perceived latency of
android apps,” IEEE Transactions on Mobile Computing, vol. 16, no. 10,
pp. 2913–2926, 2017.

[48] S. Rosen, B. Han, S. Hao, Z. M. Mao, and F. Qian, “Push or request: An
investigation of HTTP/2 server push for improving mobile performance,”
in Proceedings of the 26th International Conference on World Wide Web,
2017, pp. 459–468.

[49] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck, “Pro-
filing resource usage for mobile applications: A cross-layer approach,”
in Proceedings of the 9th international conference on Mobile systems,
applications, and services. ACM, 2011, pp. 321–334.

[50] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller, and
S. Shayandeh, “AppInsight: Mobile app performance monitoring in the
wild,” in Proceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation, vol. 12, 2012, pp. 107–120.

[51] L. Zhang, D. R. Bild, R. P. Dick, Z. M. Mao, and P. Dinda, “Panapp-
ticon: Event-based tracing to measure mobile application and platform
performance,” in Proceedings of the International Conference on Hard-
ware/Software Codesign and System Synthesis. IEEE, 2013, pp. 1–10.

[52] A. Nistor and L. Ravindranath, “Suncat: Helping developers under-
stand and predict performance problems in smartphone applications,”
in Proceedings of the International Symposium on Software Testing and
Analysis. ACM, 2014, pp. 282–292.

[53] Y. Lin, C. Radoi, and D. Dig, “Retrofitting concurrency for Android
applications through refactoring,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering. ACM, 2014, pp. 341–352.

[54] Y. Kang, Y. Zhou, H. Xu, and M. R. Lyu, “DiagDroid: Android
performance diagnosis via anatomizing asynchronous executions,” in
Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2016, pp. 410–421.

[55] K. Lee, D. Chu, E. Cuervo, J. Kopf, Y. Degtyarev, S. Grizan, A. Wol-
man, and J. Flinn, “Outatime: Using speculation to enable low-latency
continuous interaction for mobile cloud gaming,” in Proceedings of the
13th Annual International Conference on Mobile Systems, Applications,
and Services. ACM, 2015, pp. 151–165.

[56] Y. Zhao, M. S. Laser, Y. Lyu, and N. Medvidovic, “Leveraging program
analysis to reduce user-perceived latency in mobile applications,” in
Proceedings of the International Conference on Software Engineering,
2018.

[57] Y. Lyu, D. Li, and W. G. Halfond, “Remove RATs from your code: Au-
tomated optimization of resource inefficient database writes for mobile
applications,” in Proceedings of the 27th International Symposium on
Software Testing and Analysis. ACM, 2018, pp. 310–321.

[58] D. T. Nguyen, G. Zhou, G. Xing, X. Qi, Z. Hao, G. Peng, and Q. Yang,
“Reducing smartphone application delay through read/write isolation,”
in Proceedings of the 13th Annual International Conference on Mobile
Systems, Applications, and Services. ACM, 2015, pp. 287–300.

https://developer.android.com/topic/performance/graphics
https://fdroid.org/
https://developer.android.com/guide/platform/
https://developer.android.com/guide/platform/
https://developer.android.com/topic/performance/graphics/load-bitmap
https://developer.android.com/topic/performance/graphics/load-bitmap
https://developer.android.com/reference/
http://sable.github.io/soot/
https://sourceforge.net/projects/dex2jar/
https://github.com/ctodobom/OpenNoteScanner
https://github.com/daneren2005/Subsonic
https://github.com/wordpress-mobile/WordPress-Android
https://github.com/afollestad/photo-affix
https://github.com/kontalk/androidclient
https://github.com/OneBusAway/onebusaway-android
https://github.com/TeamNewPipe/NewPipe
https://github.com/moneymanagerex/android-money-manager-ex
https://github.com/moneymanagerex/android-money-manager-ex
https://github.com/the-blue-alliance/the-blue-alliance-android
https://github.com/the-blue-alliance/the-blue-alliance-android
https://github.com/samuelclay/NewsBlur
https://github.com/haiwen/seadroid
https://github.com/abarisain/dmix
https://github.com/k3b/APhotoManager
https://github.com/siacs/Conversations
https://github.com/owncloud/android
https://github.com/geopaparazzi/geopaparazzi
https://github.com/ligi/PassAndroid
https://github.com/slartus/4pdaClient-plus
https://github.com/PrivacyApps/document-viewer
https://github.com/Neamar/KISS
https://github.com/nkanaev/bubble
https://github.com/moezbhatti/qksms
https://github.com/chrisbanes/PhotoView

	Introduction
	Background
	Image Displaying in Android Apps
	Inefficient Image Displaying (IID)

	Empirical Study
	Methodology
	Dataset collection
	Analyzing the IID issues

	Empirical Study Results
	RQ1: What are the triggering conditions and consequences of IID issues??
	RQ2: What are the root causes of IID issues?
	RQ3: Are there common anti-patterns for IID issues?


	Static Detection of IID Issues
	IID Issue Anti-pattern Rules
	The TAPIR Static Analyzer

	Evaluation
	Experimental Setup
	Effectiveness Validation Results
	Applying TAPIR in Practice
	Evaluation Results and Developers' Feedback
	Real-world IID Issue Cases

	Threats to Validity

	Related Work
	Conclusion
	References

