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Abstract—Smartphone applications have millions of users. 
Their energy efficiency is very important. However, we investi-
gated 174 Android applications and found 33 of them suffering 
serious energy inefficiency problems. Many of these problems 
are due to ineffective use of sensors and their data. In this pa-
per, we propose a novel approach to systematically diagnose 
energy inefficiency problems in Android applications. We de-
rive an application execution model from Android specifica-
tions, and leverage it to realistically simulate an application’s 
runtime behavior. Our approach can automatically analyze an 
application’s sensory data utilization at different states, and 
report actionable information to help developers locate energy 
inefficiency problems and identify their root causes. We built a 
tool called GreenDroid on top of Java PathFinder and evaluat-
ed it using six popularly downloaded Android applications. 
GreenDroid analyzed these applications in a few minutes, and 
successfully located real energy inefficiency problems in them. 

Keywords-energy inefficiency; sensory data utilization. 

I.  INTRODUCTION  

Increasing market penetration of smartphones fosters the 
proliferation of various sensor-based applications. These 
applications can sense the users’ environment and provide 
context-aware services. For example, Google Maps can nav-
igate users when they hike in a rural area by location sensing. 
However, limited battery life always restricts such applica-
tions’ usage as sensing operations are energy-consuming. If 
sensors are not used cost-effectively, batteries can drain 
quickly [18]. Energy efficiency thus becomes an important 
factor to consider in smartphone application development. 

Unfortunately, our investigation of 174 popular Android 
applications shows that 33 of them have received strong 
complaints from users because of the energy inefficiency 
problems [8]. Many problems are caused by sensors for two 
major reasons. First, the Android framework shifts the bur-
den of sensor management to developers [1]. Sensor mis-
management can easily lead to huge energy waste. Second, 
Android applications are mostly developed by small teams 
without dedicated quality assurance. Developers tend to fo-
cus on functionalities, while largely overlooking energy inef-
ficiency complaints from users, especially when these com-
plaints contain little actionable information.1 

Locating energy inefficiency problems in Android appli-
cations is the first step towards energy consumption optimi-
                                                           
*Corresponding author. 

zation. It is difficult because energy inefficiency often occurs 
only at certain application states. To identify such states, one 
has to extensively test the application on different devices 
and perform energy profiling for every state. To figure out 
the causes, one has to instrument the concerned programs to 
collect and analyze runtime usage information of sensory 
data. Such tasks are tedious and require intensive manual 
efforts. This may explain why only 12 of the 33 energy inef-
ficiency problems found in our investigation have ended up 
with concrete fixes [8]. Therefore, we aim at an automated 
energy analysis approach to help developers quickly locate 
energy inefficiency problems in their Android applications. 

Currently there is no well-defined criterion for energy 
analysis. We closely studied the energy inefficiency prob-
lems found in our investigation, and observed that: Although 
the root causes of energy waste can be application-specific, 
they are closely associated with the ineffective use of sensors 
and their data. For example, Osmdroid, a popular mapping 
application, may keep acquiring GPS data to render an invis-
ible map at certain states [17]. Battery energy is thus wasted 
by location sensing, but the acquired data are not used for 
users’ benefits (rendering an invisible map is meaningless). 
Our study found two common types of coding phenomena 
that could lead to energy waste in Android applications. 

Sensor listener misusage. To use a sensor, an applica-
tion needs to register a sensor listener with the Android sys-
tem, and specify a sensing rate [1]. A listener defines how an 
application reacts to sensor value or status changes. When 
the sensor is no longer needed, its corresponding listener 
should be unregistered. Forgetting to unregister would lead 
to wasted sensing operations and battery energy [2].  

Sensory data underutilization. Sensory data are ac-
quired at the cost of energy, and should be effectively used 
by an application. Sensory data are “underutilized” when 
their energy cost outweighs their actual uses. As shown later, 
sensory data underutilization often suggests design or im-
plementation defects that could cause energy waste.  

With these two findings, we propose a novel approach 
for systematic diagnosis of energy inefficiency problems in 
Android applications. Our approach conducts code analysis 
to simulate the runtime behavior of an application. It checks 
how sensory data are utilized at each explored application 
state, and monitors sensor listener registration and unregis-
tration operations. We implement our approach on top of 
Java PathFinder (JPF) [28], a verification framework for 
Java programs. We will show later that our approach can 
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analyze location data utilization over 120K states for Os-
mdroid within three minutes, and successfully locate its en-
ergy inefficiency problem. Such efficient and effective ener-
gy analysis needs to address two major technical challenges:  

Challenge 1. Android applications follow an event-
driven programming paradigm. Developers specify the ap-
plication logic in a set of loosely coupled event handlers that 
are implicitly called at runtime (see Section II.A). The han-
dler calling order is never specified in code. This causes 
trouble for existing analysis frameworks like JPF as they rely 
on explicit calling relationships to analyze programs. Re-
searchers from “Google Summer of Code” project aim to 
enable JPF to verify Android applications, but have not been 
very successful over the past several years [9].  

Challenge 2. To analyze how sensory data are utilized in 
an Android application, one needs to know which program 
data depend on sensory data and how they are used. This 
requires program instrumentation, which is usually unavaila-
ble in source code. Manually making application-specific 
instrumentation is labor-intensive and error-prone. Hence, it 
reduces the attraction and practicality of such energy analysis.  

To address the first challenge, we derive an application 
execution model from Android specifications. This model 
captures application-generic temporal rules that specify call-
ing relationships between event handlers. Enforcing these 
rules would enable JPF to realistically execute an Android 
application. To address the second challenge, we monitor an 
application’s execution, and perform dynamic data flow 
tracking at a bytecode instruction level. By doing so, we can 
automatically pinpoint those application states where sensory 
data are underutilized or sensor listeners are misused. In this 
paper, we make the following contributions: 
 We propose a runtime analysis technique to automatical-

ly analyze sensory data utilization at different states of an 
Android application. 

 We present an application execution model that captures 
application-generic temporal rules for event handler 
scheduling. This model is general enough to be used in 
other Android application analysis techniques. 

 We implement a prototype tool called GreenDroid. To 
the best of our knowledge, GreenDroid is the first JPF 
extension that is able to verify Android applications. 

 We evaluate GreenDroid using six popular Android ap-
plications. GreenDroid successfully located real energy 
inefficiency problems in four applications, and reported 
new problems for the remaining two. 
The rest of this paper is organized as follows. Section II 

introduces the basics of Android applications and a motivat-
ing example. Section III presents our energy analysis ap-
proach. Section IV evaluates our approach and discusses the 
experimental results. Section V reviews representative relat-
ed work, and finally Section VI concludes this paper.  

II. BACKGROUND AND MOTIVATING EXAMPLE 

A. Background 

Android is a popular smartphone platform, where Java 
applications are programmed in four types of components: 

Activity. Activities are the only components that contain 

graphical user interfaces. An application may comprise mul-
tiple activities to provide a cohesive user experience.  

Service. Services are components that run in the back-
ground for conducting long-running tasks like sensor read-
ing. Activities can start and interact with services. 

Broadcast receiver. Broadcast receivers define how an 
application responds to system-wide broadcasted messages. 
It can be statically registered in an application’s configura-
tion file, or dynamically registered at runtime.  

Content provider. Content providers manage shared ap-
plication data, and provide an interface for other components 
or applications to query or modify these data.  

Each application component has a lifecycle defining how 
it is created, used, and destroyed. Figure 1 shows an activity 
lifecycle. It starts with a call to onCreate() handler, and ends 
with a call to onDestroy() handler. An activity’s foreground 
lifetime starts after a call to onResume() handler, and lasts 
until onPause() handler is called when another activity comes 
to the foreground. In the foreground, an activity can interact 
with its user. When it goes to the background and becomes 
invisible, its onStop() handler would be called. When users 
navigate back to a paused or stopped activity, the activity’s 
onResume() or onRestart() handler would be called, and the 
activity would come to the foreground again. In exceptional 
cases, a paused or stopped activity may be killed for releas-
ing memory to other applications with higher priorities.  

B. Motivating Example 

Let us discuss a real energy inefficiency problem found 
in Osmdroid [17]. Figure 2 gives a simplified version of the 
concerned code. It has three components: (1) MapActivity 
for displaying a map to its user, (2) GPSService for location 
sensing and data processing in the background, and (3) a 
broadcast receiver for handling location change messages 
(Lines 7–13). When MapActivity is launched, it starts 
GPSService (Lines 5–6), and registers the broadcast receiver 
(Lines 15–16). GPSService registers a location listener with 
the Android system when it starts (Lines 36–47). When the 
user’s location changes, GPSService would process new 
location data (Line 39), and broadcast a message with the 
processed data (Lines 41–43). The broadcast receiver would 

onCreate()

onStart()

onResume()

Activity in 
foreground 

onPause()

onStop()

onDestroy()

Activity leaves foreground

Activity in background (invisible)

Activity launched

Activity is finishing or being destroyed

User returns 
to the activity

onRestart()

User navigates 
to the activity

App process 
killed

Apps with higher 
priority need memory

User navigates to 
the activity

 
Figure 1. Activity lifecycle diagram 
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then use the new location data to refresh the map (Line 10). 
If the user has enabled location tracking, these data would 
also be stored in a database (Line 11). If the Android system 
plans to destroy MapActivity (Lines 18–22), GPSService 
would be stopped (Line 20), and both the location listener 
and broadcast receiver would be unregistered (Lines 21, 51).  

If Osmdroid’s users switch their smartphones to another 
application, MapActivity would be put to the background 
(not destroyed), but GPSService would still keep running for 
location sensing. If the location tracking functionality is not 
enabled, all location data would be used to refresh an invisi-
ble map. Then, a huge amount of energy would be wasted.  

The cause of this energy waste is the delayed unregistra-
tion of the location listener. GPS sensing should be disabled 
if location data are only used to render an invisible map. This 
resembles a resource leak problem, but existing resource leak 
detection techniques [3][25] cannot effectively locate energy 
inefficiency problems for two reasons. First, existing tech-
niques rely on explicit calling relationship to conduct pro-
gram analysis. Such relationship is not readily available in an 
Android application’s source code. Second, existing tech-
niques can neither distinguish application states nor analyze 
sensory data utilization. For example, if users have enabled 
the location tracking functionality before putting MapActivi-
ty to the background, then even if the battery is still drained 
by continuous GPS sensing, we cannot conclude that the 
energy is wasted (location data are stored for future use) 
[16]. This motivates us to propose an approach that corre-
lates application states and sensory data utilization to diag-
nosing energy inefficiency problems in Android applications. 

III. ENERGY INEFFICIENCY ANALYSIS APPROACH 

Our approach contains an Android application execution 
model and a tainting-based technique for analyzing sensory 
data utilization. We start with an overview. 

A. Approach Overview 

Our analysis is based on dynamic information flow [11]. 
Figure 3 shows its high-level abstraction. It takes as input the 
Java bytecodes and configuration files of an Android appli-
cation. The Java bytecodes define the application’s program 

logic, and can be obtained by compiling its source code or 
transforming its Dalvik bytecodes [15]. The configuration 
files specify the application’s components, GUI layouts and 
so on. The general idea is that we execute an Android appli-
cation in JPF’s Java virtual machine (JVM)2, and systemati-
cally explore its application states. During an execution, our 
approach monitors the sensor registration and unregistration 
operations, and feeds mock sensory data to the application. 
By tracking the propagation of sensory data as the applica-
tion executes, we analyze how sensory data are utilized at 
different application states. Our approach compares sensory 
data utilization across different states and reports those states 
where sensory data are underutilized. Our approach also 
checks which sensor listeners have been forgotten to unregis-
ter at the end of an execution, and reports these anomalies. 

This high-level abstraction looks intuitive, but some chal-
lenging questions remain unanswered: How can JPF realisti-
cally execute an Android application and enumerate its states? 
How to identify program data that depend on sensory data? 
How to measure and compare sensory data utilization at dif-
ferent application states? We answer them below. 

B. Application Execution Model 

An Android application starts with its main activity, and 
ends after all its components are destroyed. It keeps handling 
received events by calling their handlers according to An-
droid specifications. Each call to an event handler may 
change the application’s state by modifying its components’ 
local or global program data. We thus use the sequence of 
event handlers that have been called to represent an applica-
tion state. To simulate real executions, we need to derive an 

                                                           
2 On real devices, an Android application runs in a registered-based Dalvik VM, 
while JPF’s JVM is stack-based. This difference does not affect our analysis. 

public class MapActivity extends Activity{
private Intent gpsIntent;
private BroadcastReceiver myReceiver;

public void onCreate(){
gpsIntent = new Intent(GPSService.class);
startService(gpsIntent); //start GPSService
myReceiver = new BroadcastReceiver() {

public void onReceive(Intent intent) {
LocData loc = intent.getExtra();
updateMap(loc);
if(trackingModeOn) persistToDatabase(loc);  

}
}
//register receiver for handling location change messages
IntentFilter filter = new IntentFilter(“loc_change”);
registerReceiver(myReceiver, filter);

}  

public void onDestroy() {
//stop GPSService and unregister broadcast receiver
stopService(gpsIntent);
unregisterReceiver(myReceiver);

}
}

1.
2.
3.

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.

18.
19.
20.
21.
22.
23.

public class GPSService extends Service{
private LocationManager lm;
private LocationListener gpsListener;

public void onCreate(){
//get a reference to system location manager
lm = getSystemService(LOCATION_SERVICE);
gpsListener = new LocationListener() {

public void onLocationChanged(Location loc) {
LocData formattedLoc = processLocation(loc);
//create and send a location change message
Intent intent = new Intent(“loc_change”);
intent.putExtra(“data”, formattedLoc);
sendBroadcast(intent);

}
}

//GPS listener registration
lm.requestLocationUpdates(GPS, 0, 0, gpsListener);

}

public void onDestroy() {
//GPS listener unregistration
lm.removeUpdates(gpsListener);

}
}

31.
32.
33.

34.
35.
36.
37.
38.
39.
40.
41.
42.
43. 
44.
45.

46.
47.
48.

49.
50.
51.
52.
53.  

Figure 2. Motivating example from the Osmdroid application (Issue 53)
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Figure 3. Approach overview 
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application execution model (or AEM) from Android speci-
fications, and leverage it to guide the runtime scheduling of 
event handlers. Our AEM model is a collection of temporal 
rules. They are application-generic and should be enforced at 
runtime (unary temporal connective □ means “always”): 

ᇝܯܧܣ ≔ ሥ	ܴ
݅  

Each temporal rule is expressed in the following form: 
ܴ ≔	[߰],[߶]⟹ ߣ  

ψ and λ are two temporal formulae expressed in linear-
time temporal logic, and refer to the past and future, respec-
tively. ϕ is a propositional logic formula referring to the pre-
sent. ψ describes what has happened in an execution, ϕ eval-
uates the current situation (what event is received), and λ 
describes what should be done in the future. The whole rule 
means: If both ψ and ϕ hold, λ should be executed next. 

We list some temporal rules in Table 1. For the entire 
collection, readers may refer to our technical report [24]. 
Propositional connectives ˄, ⇒, and ¬ in these examples 
follow their traditional interpretations, and temporal connec-
tives are explained as follows. Unary temporal connective ⵔ  
means “next”, and its past time analogue ⵙ  means “previ-
ously”. Binary temporal connective Ss means “strong since”. 
Specifically, a temporal formula “F1 Ss F2” means that F2 
held at some time in the past, and since then F1 always holds.   

The first rule requires an activity’s onStart() handler to be 
called after its onCreate() handler completes as long as the 
activity is not forced to finish. The second rule requires a 
button-click event handler to be called if: (1) the button is 
clicked, (2) its enclosing activity is at foreground (i.e., the 
activity’s onPause() handler has not been called since the last 
call to onResume() handler), and (3) its click event listener is 
registered. The third rule disenables the call to a message 
event handler before its registration and after its unregistra-
tion. The last rule requires that a static message event han-
dler should be called upon any broadcasted message. 

Our AEM model is converted to a decision procedure to 
decide which event handlers to be called according to an 
application’s execution history and its newly received events. 
Due to page limit, we do not discuss the details in this paper. 
In addition to the AEM model, our runtime controller also 
needs to simulate user interactions. It pre-analyzes an appli-
cation’s configuration files to learn an application’s GUI 
layouts. During execution, when the application awaits user 
interactions, our controller would generate a sequence of 
interaction events (e.g., click events). We leverage JPF’s 
model checking functionality to systematically generate such 
sequences to explore different possibilities. Since all event 
sequences are infinite, we have to limit the number of user 
interaction events generated in an execution. By this, we 
execute an application a finite number of times in JPF’s vir-

tual machine, and generate distinct sequences of user interac-
tion events for these executions. 

C. Sensory Data Utilization Analysis 

During program execution, sensory data are transformed 
and consumed by application components. We track the us-
age of these data by variables in each bytecode instruction 
for a precise analysis of sensory data utilization. To do so, 
we adapt the idea of dynamic tainting [11], and design our 
tainting-based analysis technique, which contains three phas-
es: (1) taint each sensory datum with a special mark; (2) 
propagate taint marks as the application executes; (3) analyze 
sensory data utilization at specific points during the execu-
tion. We elaborate on these phases below. 

1) Preparing and Tainting Sensory Data 
In this phase, mock sensory data from an existing data 

pool controlled with different precision levels are fed to the 
application under analysis before and after each user interac-
tion. Each data object representing a sensory datum is tainted 
with a unique mark before being fed to the application.  

2) Propagating Taint Marks 
At runtime, each tainted data object is transformed by as-

signment, arithmetic, relational, or logical operations and 
control flows. For example, in Figure 2 object loc at Line 38 
is transformed to another object formattedLoc at Line 39, 
which further affects object intent at Lines 41–42; by a mes-
sage communication, this intent object is propagated to a 
broadcast receiver and converted back to the loc object at 
Line 9, which may or may not affect database contents, de-
pending on variable trackingModeOn’s value (Line 11). 
Such data flows are leveraged to propagate taint marks as 
well as to identify which program data rely on sensory data.  

Our technique propagates taint marks at the bytecode in-
struction level in JPF’s virtual machine. A key advantage of 
instruction-level taint propagation is that it does not require 
application-specific program instrumentation, which is both 
time-consuming and error-prone. Our tainting policy in Ta-
ble 2 contains 12 propagation rules of the following form: 

T(A) = T(B) ⋃ T(C) 

It means that B’s and C’s taint marks are merged to be 
A’s taint marks (B and C are optional). Instead of elaborating 
on each propagation rule, we illustrate taint propagation us-
ing a concrete example. The code in Figure 4 uses accel-
erometer data to detect whether the phone is shuffled (Line 
3). If it is, the application’s background would be changed 
(Lines 4–10). The initial taint mark is associated with an 
object reference event. It is propagated to a local variable 
values inside the isShuffled method (Rules 8, 5). By assign-
ments, the taint mark is propagated to variables x, y, and z 
(Rules 3, 4). Next, a local variable accelerationSquareRoot 

Table 1. Example temporal rules 

Rule 1: When  should the lifecycle event handler act.onStart() be called? Rule 3: When  should  a dynamic message  event handler  rcv.onReceive() be  called?

ሺሻ݁ݐܽ݁ݎܥ݊.ݐܿܽ					 , ܫܨ_ܶܥܣ ܶܰܧܸܧ_ܪܵܫܰ ⟹ ሺሻݐݎܽݐܵ݊.ݐܿܽ				 rcv.݃݁ݎ݊ݑሺሻ		ܵ௦		ݎcv.݃݁ݎሺሻ , ܶܰܧܸܧ_ܩܵܯ ⟹ ܴܿ݁݊.cvݎ				 ሺሻ݁ݒ݁݅

Rule 2: When  should a button‐click  event handler  listener.onClick()   be  called? Rule 4: When  should  a static message event handler  Receiver.onReceive()  be called? 

ሺܽܿ݁ݏݑܽܲ݊.ݐሺሻ	 ௦ܵ	ܽܿ݁݉ݑݏܴ݁݊.ݐሺሻሻ∧ ሺܾ݃݁ݎ.݊ݐሺ݈݈݊ݑሻ	 ௦ܵ	ܾ݊ݐ . ݐ݁ݏሺ݈݅݃݁ݎ ሻሻݎ݁݊ ,
ܶܰܧܸܧ_ܭܥܫܮܥ_ܰܶܤ ሺሻ݈݇ܿ݅ܥ݊.ݎ݁݊݁ݐݏ݈݅				⟹

݁ݑݎܶ , ሾܶܰܧܸܧ_ܩܵܯሿ⟹ ܴ݁ܿ ܴܿ݁݊.ݎ݁ݒ݁݅ ሺሻ݁ݒ݁݅

⨀ ○

○ ○

○
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is tainted accordingly (Rules 6, 4). Finally, the returned 
Boolean value is tainted and assigned to a local variable 
switch inside the onSensorChanged method. Since switch’s 
value is control-dependent on accelerationSquareRoot, 
which is data-dependent on event, switch is tainted with the 
same mark. We specially taint the return value of a method if 
any of its arguments is tainted (including the implicit “this” 
argument if any), and we choose not to track other finer-
grained control flows. This is because tracking control flows 
can cause significant performance overhead and imprecision 
in tainting [7]. Our taint propagation terminates at the call 
boundary of the corresponding sensor event handlers (e.g., 
the onSensorChanged handler). By this, we trace sensory 
data usage when an application executes. 

3) Analyzing Sensory Data Utilization 
From its initial state, an Android application visits a set 

of states by handling received events, and terminates at the 
final state when all its components are destroyed. The appli-
cation state space can be unbounded. As explained earlier, 
we execute an application a finite number of times, and gen-
erate a distinct sequence of user interaction events for each 
execution. From this, we systematically explore different 
application states. We denote such explored state space as S. 

For each state, we analyze how sensory data are utilized, and 
compare their usage across different states in S. We define 
our metric of utilization coefficient by Equation (1): 

(1)      
))','((

),(
),(_

',' dsusageMax

dsusage
dstcoefficiennutilizatio

DdSs 

  

The utilization coefficient of sensory data d at state s is 
defined as the ratio between data d’s usage at state s and the 
maximum usage of any sensory data in data pool D at any 
state in S. By this definition, a low utilization coefficient 
value indicates a low utilization of sensory data. The usage 
of sensory data d at state s is further defined by Equation (2): 

(2)          )(),(),(
),(


dsInstri

irelsiweightdsusage  

Instr(s, d) is the set of bytecode instructions that are exe-
cuted after the tainted sensory data d are fed to the applica-
tion at state s until the taint propagation terminates. Boolean 
function rel(i) tests whether an instruction i uses any pro-
gram data tainted by the same mark (1 for yes and 0 for no). 
Function weight(i,s) assigns a weight to instruction i based 
on its type and the state at which i is executed. We follow the 
principle that an instruction should have a higher weight if its 

Table 2. Taint propagation policy 

Index Bytecode Instruction Instruction Semantics Taint Propagation Rule

1 Const-op C stack[0]  C T(stack[0]) = Ø

2 Load-op index stack[0]  localVarindex T(stack[0]) = T(localVarindex)

3 LoadArray-op arrayRef, index stack[0]  arrayRef [index] T(stack[0]) = T(arrayRef) ⋃ T(arrayRef [index])

4 Store-op index localVarindex stack’[0] T(localVarindex) = T(stack’[0])

5 StoreArray-op arrayRef, index arrayRef [index]  stack’[0]  T(arrayRef [index]) = T(stack’[0])

6 Binary-op stack[0]  stack’[0] ⊗ stack’[1] T(stack[0]) = T(stack’[0]) ⋃ T(stack’[1])

7 Unary-op stack[0] ⊖ stack’[0] T(stack[0]) = T(stack’[0])

8 GetField-op index stack[0]  stack’[0].instanceField T(stack[0]) = T(stack’[0].instanceField) ⋃ T(stack’[0])

9 GetStatic-op index stack[0]  ClassName.staticField T(stack[0]) = T(ClassName.staticField)

10 PutField-op index stack’[1].instanceField stack’[0] T(stack’[1].instanceField) = T(stack’[0])

11 PutStatic-op index ClassName.staticField stack’[0] T(ClassName.staticField) = T(stack’[0])

12 Return-op(non-void) callerStack[0]  calleeStack’[0] T(callerStack[0]) = T(calleeStack’[0]) 

Index Detailed Instruction Semantics (The semantics of the instructions whose index are underlined serve as examples)

1 Push a constant value C onto the operand stack (stack[0] represents the value at the stack top after an operation).

2, 3 Load the value of the #index local variable onto the operand stack.

4, 5 Pop and store the value at stack top to the #index local variable (stack’[0] represents the value at the stack top before an operation).

6, 7 Perform the binary operation ⊗ on the two values popped from the operand stack (i.e., stack’[0] and stack’[1]), and push the result back onto stack.

8, 9 Get a field value of an object on the heap and push the value onto the operand stack. The object reference is popped from the stack (i.e., stack’[0]).The 
object field’s name and type can be found by referring to the #index slot of the constant pool.

10, 11 Pop and store the value at the stack top (i.e., stack’[0]) to an object field on the heap. The object reference is popped from the stack (i.e., stack’[1]). 
The object field’s name and type can be found by referring to the #index slot of the constant pool.

12 Pop the value at the callee’s operand stack top (i.e., calleeStack’[0]), and push the value onto the caller’s operand stack.

public void onSensorChanged(SensorEvent event){
if(event.sensor.getType() == Sensor.ACCELEROMETER){

boolean switch = isShuffled(event);
if(switch){

if(getBackgroundColor() == RED){
setBackgroundColor(GREEN);

} else{
setBackgroundColor(RED);

} 
} 

}
}

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

public boolean isShuffled(SensorEvent event){
float[] values = event.values;
float x = values[0];
float y = values[1];
float z = values[2];
float g = SensorManager.GRAVITY_EARTH;
float accelerationSquareRoot = (x * x + y * y + z * z) / (g * g);
if(accelerationSquareRoot >= 2){

return true;
}
return false;

}      

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.  

Figure 4. Example code to demonstrate taint propagation 
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execution brings more benefits to users, and formulated the 
following heuristic weight assignment strategy: 
 Any unary, binary computation, or assignment instruc-

tion has a unit weight, no matter at which state the in-
struction is executed. 

 The weight of a method-calling instruction j depends on 
the number of instructions (say, n) in that method and the 
state when j is executed. If the method is to update invis-
ible GUI elements at background, j’s weight is set to –n. 
Otherwise, it is set to n. 

 Any other instruction has a zero weight. 
Based on sensory data utilization coefficients, one can 

identify those application states where sensory data are un-
derutilized. Let us consider three states of our motivating 
example. They are listed in Table 3 and represented by the 
sequences of event handlers called after the application 
launches. For example, the third state (HS0→HS1→HS2) 
means that users enable location tracking (HS1) after the ap-
plication initializes its MapActivity (HS0); after a while, they 
switch to other activities (HS2). Let us analyze sensory data 
utilization for the three states. For ease of presentation, we 
explain at the source code level and assume each method 
contains n instructions. Consider the second state where us-
ers switch to other activities after using MapActivity, and the 
location tracking is disabled by default. At this state, GPS 
data and their dependent data are consumed by processLoca-
tion, putExtra, sendBroadcast, getExtra, and updateMap 
method calls in turn. Boolean function rel returns 1 for all 
these method call instructions, and their weights are all n 
except updateMap whose weight is –n since this method is 
used to render an invisible map. According to Equation (2), 
GPS data usage at this state is 3n. We can also calculate that 
GPS data have a maximum usage of 6n at the first state 
where all method call instructions have a weight of n (includ-
ing persistToDatabase). Then, the GPS data utilization coef-
ficient at the second state is 0.50 (3n/6n). GPS data utiliza-
tion coefficients at other states can be calculated similarly. 
The results reveal that GPS data are the least utilized at the 
second state. Our approach allows such automated analysis 
and reports energy inefficiency findings.  

Our tool implementation ranks sensory data utilization 
coefficients at different states so that energy inefficiency 
reports can be prioritized. These reports contain information 
about how sensory data are used at each state, and highlight 
those method call instructions with high or negative weights. 
Our tool also provides detailed event handler calling traces to 
help developers construct concrete test cases to reproduce 
specific sensory data utilization scenarios. This actionable 
information can effectively help locate energy inefficiency 
problems in Android applications.  

IV. EVALUATION 

We implemented our approach as a prototype tool called 
GreenDroid on top of JPF. Implementation details can be 
found in our technical report [24]. In this section, we evalu-
ate our approach by controlled experiments. We aim to an-
swer the following two research questions: 
 RQ1: Can our approach effectively detect energy ineffi-

ciency problems in Android applications? 
 RQ2: How does our approach compare with existing 

resource leak detection techniques? 

A. Experimental Setup and Design 

We selected six popular open-source Android applica-
tions as our experimental subjects. They are available on 
Google Play Store or Google Code. Table 4 lists their basic 
information. All applications were compiled for Android 
2.3.3. We conducted our experiments on a dual-core machine 
with Intel Core i5 CPU and 8GB RAM, running Windows 7.  

To answer research question RQ1, we ran GreenDroid to 
analyze each application for its sensory data utilization at 
different states. We controlled GreenDroid to generate at 
most six user interaction events during each application exe-
cution. This suffices for GreenDroid to explore considerable 
application states. We examined the analysis reports to see 
whether they helped locate real energy inefficiency problems 
in these applications. We report the results in Section IV.B. 

Our work shares some similarities with existing resource 
leak detection techniques [3][25]. To answer research ques-
tion RQ2, we compared our approach with them. Since exist-
ing techniques do not apply to Android applications, we re-
implemented them on top of JPF. We conducted experiments 
with two settings. First, we applied these techniques without 
our AEM model, assuming that event handlers could be arbi-
trarily called. Second, we applied these techniques and en-
forced the event handler orderings required by our AEM 
model. Under both settings, we checked whether existing 
techniques helped locate energy inefficiency problems in the 
six applications. We report the results in Section IV.C.  

B. Detected Energy Inefficiency Problems 

Table 4 presents our tool’s analysis overhead for the six 
applications. Even for the two largest subjects Omnidroid 
and DroidAR (over 18K LOC), our analysis finished within 
five minutes and cost less than 600 MB memory. Such over-
head is well supported by modern PCs and compares favora-
bly with state-of-the-art testing or debugging techniques, 
which typically take hours to explore up to 100K states [23]. 
Our tool found real energy inefficiency problems in the six 
applications3. The problems in Osmdroid, Zmanim, DroidAR 
and Recycle-locator have been confirmed by developers pri-
or to our experiments. The problems in Omnidroid and 
GPSLogger are new, and one of them has been recently con-
firmed by developers. We present these findings below. 

Osmdroid. Osmdroid is an application similar to Google 
Maps. After analysis, our tool reported that its location data 
utilization coefficient is smaller than 0.4453 at 49.95% of all 
explored states as shown in Figure 5(a). This strongly sug-

                                                           
3 All our reported issues can be found on Google Code: http://code.google.com 

Table 3. GPS data utilization coefficients at three states

Application State (“→” means “followed by”) GPS Data Utilization Coefficient

ܵܪ → ܪ ଵܵ 6n/6n = 1.00

ܵܪ → ଶܵܪ 3n/6n = 0.50

ܵܪ → ଵܵܪ → ଶܵܪ 4n/6n = 0.67

 : the handler sequence that initializes the map activity	ܵܪ
 ܪ ଵܵ : the handler sequence that handles the event “enable location tracking”
 ”: the handler sequence that handles the event “switch activity	ଶܵܪ  
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gests that Osmdroid has energy inefficiency problems. From 
the top ranked 15 reports, we can quickly find that if users 
switch from MapActivity to other activities without enabling 
location tracking, location data would be used to render an 
invisible map. This greatly wastes valuable battery energy as 
already reported by users (Osmdroid Issue 53). 

Zmanim. Zmanim is a location-aware application for 
displaying prayer times during a day (zmanim) for Jews. The 
application generates zmanim according to users’ location. 
Interestingly, developers realized that location sensing is 
energy-consuming, and they made the application stop loca-
tion sensing once required location is obtained. However, as 
Figure 5(b) shows, our tool reported that at 8.86% of all ex-
plored states, the location data utilization coefficient is 
smaller than 0.3448. We confirmed that this energy ineffi-
ciency problem is similar to that found in Osmdroid. If users 
switch from the location sensing activity to other activities 
before a required location is obtained, battery energy would 
be wasted to update invisible GUI elements. In areas where 
GPS signals are weak, users repeatedly complained that 
Zmanim caused huge battery drain when it failed to detect 
required locations in a short time (Zmanim Issues 50 and 56). 

Omnidroid. Omnidroid helps automate system function-
alities based on user contexts. For example, Omnidroid can 
help users automatically reply a message like “busy in meet-
ing” when the user receives a phone call during an important 

meeting. When Omnidroid runs, it maintains a background 
service to periodically check location updates. If any location 
update satisfies a pre-specified condition, its corresponding 
action would be executed. Our analysis result in Figure 5(c) 
shows that some states have a location data utilization coef-
ficient of only 0.2499. We found that at these states, users 
actually have not yet specified any conditions. In other words, 
location data are collected for no use. Then why does the 
background service keep collecting location data? It is a 
huge energy waste. We reported our finding to Omnidroid 
developers, and suggested enabling location sensing only 
when there are conditions concerning user locations. We 
received an enthusiastic confirmation (Omnidroid Issue 179): 

 

GPSLogger. GPSLogger collects users’ GPS coordinates 
to help them tag photos or view their tracks in Google Earth. 
Figure 5(d) presents its GPS data utilization analysis result. 
We found that at 43.61% of all explored states, GPS data are 
extremely underutilized (the utilization coefficient is only 
0.0761). GPSLogger maintains a background service to re-
trieve GPS data and evaluate whether they satisfy certain 

Table 4. Application information and analysis overhead 

Application
Basic Information Analysis Overhead

Revision No. Lines of code Downloads Availability Explored states Time (seconds) Space (MB)

Osmdroid 750 18,091 10,000—50,000 Google Play Store 120,189 151 591

Zmanim 322 4,893 10,000—50,000 Google Play Store 54,270 110 205

Omnidroid 863 12,427 1000—5000 Google Play Store 52,805 220 342

DroidAR 204 18,106 1000—5000 Google Code 91,170 276 217

Recycle-locator 68 3,241 1000—5000 Google Play Store 114,709 43 153

GPSLogger 15 659 1000—5000 Google Code 58,824 35 149

3,326 (6.95%) 3,437 (6.99%)

0

5,000

10,000

15,000

20,000

25,000

0.4083 0.4453 0.9375 1.0000

N
o.

 o
f 

A
pp

. S
ta

te
s

Location Data Utilization Coefficient  

(a) Osmdroid Analysis Result

4,305
(43.61%)

523 (5.30%)

3,488 
(35.34%)

0

1,000

2,000

3,000

4,000

5,000

0.0761 0.1066 0.8985 1.0000

N
o.

 o
f 

A
pp

. S
ta

te
s

Location Data Utilization Coefficient  

(d) GPSLogger Analysis Result

315 (1.35%)

1,754 (7.51%)

0

4,000

8,000

12,000

16,000

20,000

0.3385 0.3448 0.9938 1.0000

N
o.

 o
f 

A
pp

. S
ta

te
s

Location Data Utilization Coefficient  

(b) Zmanim Analysis Result

2491 
(15.38%)

2620
(16.18%)

2665
(16.46%)

2930
(18.09%)

2791
(17.23%)

2708
(16.72%)

0

1000

2000

3000

4000

0.2499 0.3999 0.55 0.6999 0.8499 1

N
o.

 o
f 

A
pp

. S
ta

te
s

Location Data Utilization Coefficient  

(c) Omnidroid Analysis Result
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Figure 5. Utilization analysis results of location data 

“Completely true, and your suggestion is a great idea and 
you're correct omnidroid does suck up way more energy 
than necessary as a result. I'd be happy to accept a patch in 
this regard”. 
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precision requirements. If yes, they are processed and stored 
in a database. Otherwise, they are discarded. When GPS sig-
nals are weak, GPS sensors may keep generating noisy data. 
Such produced GPS data are mostly discarded and cause 
energy waste, which is why GPS data have a very low utili-
zation at some application states. For this problem, we sug-
gested temporarily disabling location sensing if the applica-
tion finds that GPS data keep being of low quality (GPSLog-
ger Issue 7). This reported issue is pending.  

Our tool also located energy wastes in DroidAR and Re-
cycle-locator. DroidAR is a framework for augmented reality 
on Android. It leverages sensory data to digitalize the real 
world and make users’ environment interactive. Recycle-
locator is a location-aware application for helping users 
quickly locate services in university campuses. Our tool de-
tected that their location listeners are never unregistered after 
usage (DroidAR Issue 27 and Recycle-locator Issue 33). This 
poses big threats to a battery’s lifetime as these sensors may 
keep running until the application process is killed [2]. 

C. Comparision with Existing Techniques 

Without our AEM model, JPF would encounter great 
challenges in analyzing Android applications. Table 5 lists 
such results. JPF executed each application 100 times and 
event handlers were called randomly, i.e., not following the 
orderings required by our AEM model. We observe many 
runtime exceptions in these executions. For example, 79 out 
of 100 executions of Osmdroid failed because of such excep-
tions. This arises from the ignorance of the data flow de-
pendencies between event handlers. For our two small-sized 
subjects Recycle-locator and GPSLogger, JPF threw fewer 
exceptions because the data flows between event handlers 
are relatively simple. Still, few (1–3) of their executions can 
occur in reality (feasible), and this seriously hinders the ap-
plication of existing resource leak detection techniques.  

For comparison, we enabled our AEM model for JPF, 
and applied existing resource leak detection techniques to 
analyze these applications. All executions then became fea-
sible, and the energy inefficiency problems related to sensor 
listener misusage in DroidAR and Recycle-locator were lo-
cated. Still, we note that these techniques could not locate 
other energy inefficiency problems related to sensory data 
underutilization. Achieving that requires non-trivial data 
flow tracking and analysis for sensory data, which are not 
available in existing resource leak detection techniques. 

D. Discussion 

Our approach is independent of its underlying program 
analysis framework. Currently, we implemented it on top of 
JPF because there is no other suitable tool but JPF is a highly 
extensive Java program verification framework (Android 
programs are written in Java). Still, analyzing Android appli-
cations using JPF is challenging. First, we need to derive an 

extensible AEM model from Android specifications and en-
force it to make JPF call event handlers in a reasonable way. 
Second, some Android APIs rely on native libraries whose 
implementation is specific to hardware and operating sys-
tems. The semantics of these APIs and their enclosing library 
classes have to be properly modeled due to JPF’s closed-
world assumption. Modeling Android libraries is known to 
be a difficult and tedious task [14]. Our current implementa-
tion only considered a critical subset of library classes and 
concerned APIs and can already analyze many real-world 
Android applications [8]. Extending our tool to support more 
Android APIs is possible and we are exactly on this way.  

Our work has some limitations. First, our approach cur-
rently cannot simulate complex user inputs such as texts (e.g., 
password) nor systematically generate mock sensory data. 
We will study the effects of this limitation in future. Besides, 
we are not clear whether our approach can be easily general-
ized to help diagnose other types, especially unknown types 
of energy waste. We also make this our future work.    

V. RELATED WORK 

Our work relates to energy efficiency analysis, resource 
leak detection, and information flow tracking. We discuss 
some representative work below. 

Energy efficiency analysis. In the past several years, re-
searchers proposed various techniques to help improve 
smartphone applications’ energy efficiency. Kim et al. pro-
posed to use power signatures based on system hardware 
states to detect energy-greedy malwares [27]. Pathak et al. 
characterized energy bugs in smartphone applications [22]. 
They also proposed eProf to help estimate an application’s 
energy consumption by tracking the activities of energy-
consuming entities when an application runs on mobile de-
vices [21]. WattsOn [13] shares a similar spirit with eProf 
but enables energy emulation on the developers’ work-
stations. MAUI [5] helped offload “energy-consuming” tasks 
to resource-rich infrastructures. EnTracked [12] and RAPS 
[18] adopted different heuristics to guide an application to 
use GPS sensors in a smart way. Little Rock [19] suggested a 
low-power processor for energy-consuming sensing opera-
tions.  SALSA [20] helped select optimal data links for sav-
ing energy in large data transmission. Our work shares a 
similar goal, but focuses on detecting energy inefficiency 
problems by systematically exploring different application 
states and diagnosing sensory data utilization. Our work in-
curs reasonable overhead, and provides developers with ac-
tionable information to locate energy inefficiency problems.  

Resource leak detection. System resources are finite, 
and developers have to ensure acquired resources to be re-
leased eventually. This task is error-prone. Empirical evi-
dence shows that resource leaks commonly occur [29]. Re-
searchers proposed language-level mechanisms and automat-
ed management techniques to prevent such leaks [6]. Various 
tools were also designed to detect resource leaks [3][25]. For 
example, QVM [3] is a specialized runtime environment for 
detecting defects in Java programs. It monitors application 
executions and checks for violations of resource safety poli-
cies. TRACKER [25] is an industrial-strength tool for finding 
resource leaks in Java programs. It conducts inter-procedural 

Table 5. Random execution result 

App Name Exceptions Feasible
Executions

App Name Exceptions Feasible
Executions

Osmdroid 79/100 0/100 DroidAR 67/100 0/100

Zmanim 31/100 0/100 Recycle-locator 4/100 3/100

Omnidroid 22/100 0/100 GPSLogger 9/100 1/100
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static analysis to ensure no resource safety policy is violated 
on any execution path. Our experiments have shown that 
these resource leak detection techniques can only help reveal 
trivial energy inefficiency problems.  

Information flow tracking. Dynamic information flow 
tracking (DFT) tracks interesting data as they propagate in 
program execution [11]. DFT has many applications. Taint-
Check [10] uses DFT to protect commodity software from 
memory corruption attacks such as buffer overflows. It taints 
input data from untrusted sources and ensures that they are 
not used in a dangerous way. TaintDroid [7] prevents An-
droid applications from leaking users' private data. It tracks 
the data from privacy-sensitive sources and would warn us-
ers when such data leave the system. LEAKPOINT [4] leverag-
es DFT to help fix memory leak in C and C++ programs. 
Dynamically allocated memory blocks are tainted and moni-
tored in case that they are forgotten to release.  

VI. CONCLUDING REMARKS 

In this paper, we have presented an approach for diagnos-
ing energy inefficiency problems in Android applications. 
Our approach simulates the runtime behavior of an applica-
tion, and automatically analyzes its sensory data utilization. 
It helps developers locate energy inefficiency problems 
caused by misusage of sensors and their data underutilization. 
We implemented a tool on top of JPF, and evaluated it using 
six real Android applications. The results confirmed its ef-
fectiveness in locating energy inefficiency problems.   

In our on-going research, we are extending this work in 
two directions. First, we are investigating more sensor-based 
Android applications to study whether misusage of sensors 
and their data underutilization are two dominant causes of 
energy waste. Second, we are investigating other energy in-
efficiency problems not related to sensors. For example, our 
initial survey and related work [26] both suggest that An-
droid’s wake lock mechanism can also cause severe energy 
waste. We believe that our work together with other related 
ones will make smartphone applications more energy effi-
cient, and this can benefit millions of users.   
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