
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

The Journal of Systems and Software 86 (2013) 854– 867

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

j ourna l ho me page: www.elsev ier .com/ locate / j ss

AFChecker: Effective model checking for context-aware adaptive applications

Yepang Liua, Chang Xub,c,∗, S.C. Cheunga

a Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
b State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, Jiangsu, China
c Department of Computer Science and Technology, Nanjing University, Nanjing, Jiangsu, China

a r t i c l e i n f o

Article history:
Received 12 July 2012
Received in revised form 16 October 2012
Accepted 17 November 2012
Available online 14 December 2012

Keywords:
Adaptation fault
Deterministic constraint
Probabilistic constraint
False positive
Fault ranking

a b s t r a c t

Context-aware adaptive applications continually sense and adapt to their changing environments. A large
body of such applications relies on user-configured adaptation rules to customize their behavior. We call
them rule-based context-aware applications (or RBAs for short). Due to the complexity required for ade-
quately modeling environmental dynamics, adaptation faults are common in these RBAs. One promising
approach to detecting such faults is to build a state transition model for an RBA, and exhaustively explore
the model’s state space. However, it can suffer from numerous false positives. For example, 78.6% of 784
reported faults for one popular RBA – PhoneAdapter, turn out to be false in a real deployment. In this
paper, we address this false positive problem by inferring a domain model and an environment model
for an RBA. The two models capture the hidden features inside user-configured adaptation rules as well
as the RBA’s running environment. We formulate these features as deterministic constraints and prob-
abilistic constraints to prune false positives and effectively prioritize remaining faults. Our experiments
on two real RBAs report that this approach successfully removes 46.5% of false positives and ranks 86.2%
of true positives to the top of the fault list.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Recent advances in mobile technologies foster the increasing
deployment of pervasive computing infrastructures (Weiser, 1999).
Context-aware adaptive applications for handheld devices with
built-in sensors are becoming increasingly popular. These appli-
cations, typically driven by user-configured rules (Locale, 2012;
SweetDreams, 2012; Tasker, 2012), follow an event-condition-
action computing paradigm (Dittrich et al., 1995) to continually
sense and adapt to their changing environments. For example,
Tasker (Tasker, 2012), a Google contest awardee (Google ADC 2
Winners, 2009), can help its users switch their Android phones to
silent mode when they arrive at their offices, and switch the phones
back to ring mode after they return home. To achieve this, the users
need to configure the following two rules:

• Rule 1: Enable silent mode when a Bluetooth device “OfficePC” is
discovered nearby (i.e., an office situation).

∗ Corresponding author at: State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing, Jiangsu, China. Tel.: +86 25 89680919;
fax: +86 25 83593283.

E-mail addresses: andrewust@cse.ust.hk (Y. Liu), changxu@nju.edu.cn (C. Xu),
scc@cse.ust.hk (S.C. Cheung).

• Rule 2: Enable ring mode when the phone’s GPS module reports
its current location as “Home” (i.e., a home situation).

While such adaptive applications help integrate the physical and
cyber worlds, they are vulnerable to abnormal adaptations caused
by rule misconfigurations (Sama et al., 2008, 2010a) Consider a sit-
uation for the preceding Tasker application: a user takes his office
PC home to continue his work. Tasker will then discover that “Offi-
cePC at home” satisfies both of the above rules. If the two rules have
the same priority, they would be non-deterministically selected
for execution, which may result in an unexpected adaptation. Such
rule misconfigurations are common since users are typically not
experts, and cannot carefully perform rule validation each time the
rule configurations are changed. This problem may become more
serious when many rules are configured and they implicitly corre-
late to each other. In fact, Tasker’s developers already confirmed the
frequent occurrence of such abnormal adaptations and pointed out
that these adaptations would significantly reduce an RBA’s usability
(Tasker Limitations, 2012).

To detect such adaptation faults from misconfigured rules, a
state-of-the-art technique (Sama et al., 2010a) extracts an adapta-
tion finite state machine (called A-FSM) from an RBA’s adaptation
rules, and exhaustively searches this A-FSM’s state space to find
potential abnormal adaptations. For each detected fault, this model
checking technique generates a report (see Fig. 1 for an example)

0164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2012.11.055

Author's personal copy

Y. Liu et al. / The Journal of Systems and Software 86 (2013) 854– 867 855

Fault Type Non-deterministic Adaptati on Fault

Trigge ring Situation

GPS. Locatio n = “Ho me” && Bluetooth.Disc overedDevices.contain s(“OfficePC”)

Details Rule 1 and Rule 2 can be simultan eously satisfied in the above situation.

Fig. 1. An example fault report.

for user inspection. While an exhaustive search guarantees the
completeness (i.e., no false negatives), it may produce many false
positives. Our experiments reveal that 78.6% of 784 faults reported
for a benchmark RBA – PhoneAdapter1 (PhoneAdapter, 2012) are
actually false (i.e., they will never occur in reality). Without effec-
tive filtering or prioritization mechanisms, this sheer volume of
false positives would certainly hinder fault inspection and fixing.
In this paper, we address the false positive problem of the exist-
ing model checking technique without sacrificing its completeness
property.

We observed that an RBA’s adaptive behavior is determined by
two important factors: (1) its internal adaptation logic, and (2) its
external environmental dynamics. Overlooking any of them might
incur imprecision in the adaptation fault detection. Therefore, we
propose to properly model the two factors for achieving effective
adaptation fault detection. Specifically, we model an RBA’s internal
adaptation logic as a domain model, and its external environmental
dynamics as an environment model. The derivation of both models
has not been systematically studied in the existing literature. In this
work, we focus on how to automatically derive these two models
and formulate them into certain constraints to mitigate the false
positive problem. We note that deriving the domain and environ-
ment models is non-trivial because of the following confounding
issues:

1. Users tend to implicitly encode their domain knowledge in an
RBA’s adaptation rules. For example, consider a rule “turn off
the phone’s ringer when GPS is switched on, and it reports
the current location as ‘Broadway Theater”’. This rule implicitly
assumes that the GPS service must be switched on before any of
its usage. Although it is common sense to human beings, auto-
mated discovery of such knowledge is essentially non-trivial.
Despite the challenges, a useful domain model should capture
such knowledge. This is because such knowledge can help decide
the impossibility of certain situations (e.g., GPS is switched off,
but it reports a valid location), and then filters out the faults that
are assumed to occur under these situations.

2. An RBA’s running environment is intrinsically probabilistic, and
different users’ behavioral patterns can differ greatly. Given a
set of RBA adaptation rules, some users may suffer from adap-
tation faults, while others may not. Environment models thus
vary with different users and are difficult to infer statically. For
example, without an in-depth analysis of historical environmen-
tal data, existing techniques can hardly discover the likelihood of
certain situations (e.g., how likely it is to find a user’s home PC in
his office on Saturdays). A useful environment model, however,
should capture the likelihood or unlikelihood of such a situation,
and use it to rank a fault report associated with this situation
accordingly. Thus users can focus on more likely faults.

To tackle these challenges, we propose a hybrid approach,
which combines static analysis and pattern-based data mining,

1 PhoneAdapter, a successor of ContextPhone (Context Phone, 2005), is a bench-
mark application used in the evaluation of the related study (Sama et al., 2010a).
We re-implemented it as a real Android application and made it open-source for
research purposes (PhoneAdapter, 2012).

to extracting domain and environment models. Our approach
relies on the existing static model checking technique (Sama
et al., 2010a) for adaptation fault detection. We systematically
process the generated fault reports using both deterministic and
probabilistic constraints formulated from our derived models.
Deterministic constraints are used to filter out fault reports that
are guaranteed to be false positives. Probabilistic constraints are
used to prioritize the fault reports that remain after pruning
false positives using deterministic constraints. The quality of this
probability-based ranking may fluctuate because spurious con-
straints can be accidentally associated with high probabilities. To
address this issue, we designed a ranking refinement mechanism
based on information theories. After the ranking, users may choose
to validate the top ranked faults during an inspection round. To
further minimize manual inspection efforts, we leverage their val-
idation feedback to dynamically re-rank those uninspected faults.
This allows more true positives to be promoted to the top of the
fault list while more false positives are relegated to the bottom in
the next inspection round. By doing so, our approach complements
the state-of-the-art technique by improving the precision of its
fault detection. The contributions of this paper include:

• We propose a novel approach, which combines static analysis and
pattern-based data mining, to automatically deriving domain and
environment models for RBAs to improve the effectiveness of the
existing adaptation fault detection technique.

• We show how to leverage the constraints formulated from
the derived models to prune false positives and prioritize fault
reports in a sound way. We design a two-phase ranking mecha-
nism as well as a feedback-directed dynamic ranking strategy to
enhance fault ranking quality.

• We implement a tool called AFChecker, and evaluated it using two
typical RBAs: PhoneAdapter (PhoneAdapter, 2012) and Tasker
(Tasker, 2012). The evaluation results show that our approach can
significantly enhance the effectiveness of the existing adaptation
fault detection technique.

The rest of this paper is organized as follows. Section 2
reviews the background of our work. Section 3 presents our model
derivation algorithm and dynamic fault ranking strategy. Sec-
tion 4 describes the implementation details of our AFChecker and
discusses our experimental results on two representative RBAs.
Section 5 reviews related work, and Section 6 concludes the paper.

2. Background

In this section, we first review the basics of RBAs, and for-
mally define the key concepts of our work. We then introduce the
finite-state model of RBAs and use a small yet realistic example
to illustrate how to perform model checking to detect adaptation
faults.

2.1. Rule-based context-aware applications

RBAs are well supported by existing pervasive infrastructures
(Capra et al., 2003; Gu et al., 2004b; Julien and Roman, 2006;
Omnidroid, 2012). Due to their capability to perform proper actions
under specific environmental changes, RBAs are becoming increas-
ingly popular among users who wish to automate some recurring
tasks (i.e., put a phone offline after midnight). To achieve such
automation, RBAs commonly let users configure adaptation rules
through a GUI. An adaptation rule typically contains five fields: cur-
rent state, predicate, new state, actions, and priority level (Sama
et al., 2010b). The semantics of a rule is that if the environmen-
tal changes satisfy the rule’s predicate, the application will transit
from its current state to a new one, along with the specified actions

Author's personal copy

856 Y. Liu et al. / The Journal of Systems and Software 86 (2013) 854– 867

performed. To facilitate user configuration, predicates should be
simple yet expressive enough. We observe that rule predicates are
typically expressed with the following syntax (SweetDreams, 2012;
Tasker, 2012; Locale, 2012; PhoneAdapter, 2012).

Predicate → Clause | Clause ∨ Predicate

Clause → Atom |¬Atom|(Atom̂Clause)

Atom → p(x)

A rule predicate is a disjunction of clauses, each of which is a
conjunction of propositional atoms (i.e., disjunctive normal form).
A propositional atom p(x) is a function that produces a truth value
(i.e., true or false) by evaluating its context variable x, which stores
environmental attributes. For example, the following propositional
atoms evaluate whether the user is driving fast or slow.

slowDriving(GPS.speed) = true if 20km/h ≤ GPS.speed < 70km/h

fastDriving(GPS.speed) = true if 70km/h ≤ GPS.speed ≤ 350km/h

Propositional atoms tend to be correlated. In this paper, we
study two types of correlations between propositional atoms:
internal correlations and external correlations. Internal correlations
capture an RBA’s internal adaptation logics, and constitute our
domain model. External correlations capture the hidden features
of an RBA’s running environment, and constitute our environment
model. We formally define the two types of correlations in the
following.

Definition 1. Two propositional atoms p(x) and p′(y) are internally
correlated if x and y refer to the same context variable.

For example, fastDriving and slowDriving are internally corre-
lated as their Boolean outcome depends on two different ranges of
the same context variable GPS.speed. They are logically inconsistent
as they can never both be true. Another example is the semantic
entailment correlation between LOCOffice and GPSOn. They are con-
sidered to be internally correlated because their context variables
GPS.Status and GPS.Location refer to the same higher level context
variable GPS.

Definition 2. Two propositional atoms p(x) and p′(y) are exter-
nally correlated if x and y refer to different context variables, but
their values are correlated due to environmental dynamics.

For example, LOCOffice and WiFiHome (defined in Table 1)
are externally correlated. For most users, the context variable
WiFi.AccessPoint cannot have the value “HomeWiFi” when the
GPS.Location equals “Office”, and vice versa. As a result, LOCOffice
and WiFiHome are logically inconsistent. Due to the probabilistic
nature of a physical environment, external correlations may vary
with each individual user. For instance, the logical inconsistency
between LOCOffice and WiFiHome may not exist for users who live
very close to their offices. Instead, for those users, LOCOffice and
WiFiHome could be externally correlated in the way that they often
simultaneously hold.2

2.2. Finite state modeling of RBAs

The event-condition-action computing paradigm makes it nat-
ural to model the adaptive behavior of RBAs using finite-state
machines. In our work, we follow the typical A-FSM modeling in
the literature (Sama et al., 2010a). An A-FSM is a tuple < S, R, A, T >. S
is a finite set of states. R is a finite set of rule predicates. A is a finite

2 In this case, it is not suggested for users to configure adaptation rules similar
to those in Table 1 as neither GPS location nor WiFi access point are good indica-
tors of their contextual situation. Instead, they may use Bluetooth devices to better
differentiate the home and office situations (see Rule 1 in Section 1 for an example).

Office

Home

Deact ivate Hom e

ActivateH ome

Outdoor

Act ivate Off ice

Deact ivate Office

Fig. 2. A-FSM example.

set of actions. T ⊆ S × R × S × A is a quaternary relation represent-
ing state transitions when rule predicates are satisfied. The A-FSM
model can be statically derived from an RBA’s adaptation rules.

Fig. 2 pictorially illustrates the A-FSM model for an example
application whose adaptation rules are given in Table 1. Nodes and
edges in Fig. 2 represent states and state transitions, respectively.
The corresponding adaptation rules are specified in the text above
each edge. This A-FSM models the application’s adaptive behavior.
For instance, when the application (currently in the “Outdoor” state)
detects that the mobile device is connected to the network “Home-
WiFi”, it will change its state to “Home” and sets its user’s favorite
song as the ring tone. Although this simple A-FSM only contains
three states, adaptation fault detection requires all possible value
combinations of the concerned propositional atoms at each state
visited by the A-FSM during a feasible execution to be analyzed.
This makes adaptation fault detection a non-trivial task.

2.3. Adaptation fault detection

Sama et al. identified a set of adaptation fault patterns, each of
which describes a common type of abnormal adaptation of RBAs
(e.g., the non-deterministic adaptation in Section 1) (Sama et al.,
2010a). They provide static model checking algorithms for detec-
ting each pattern of faults. The algorithms derive an A-FSM from an
RBA’s adaptation rules and exhaustively explore its feasible behav-
iors to search for abnormal adaptations.

Let us use a running example to illustrate the checking process.
We involve only non-deterministic and unstable adaptation faults
in our example. A full pattern list can be found in the related study
(Sama et al., 2010a). The truth value vectors of the five propo-
sitional atoms (GPSOn, LOCHome, LOCOffice, WiFiHome, WiFiOffice) in
Table 1 drives the execution of the A-FSM in Fig. 2 because whether
to trigger state transitions depends on the Boolean outcome of rule
predicates, which are determined by the truth value of concerned
propositional atoms. We start from checking the “Outdoor” state.
The algorithm requires enumerating all possible truth value vectors
of the propositional atoms (25 possibilities in total). The checker
executes the A-FSM using each truth value vector as a stimulus
under the “Outdoor” state, and searches for abnormal adapta-
tions. Consider a truth value vector with only GPSon, LOCOffice and
WiFiHome being true. The checker finds that the A-FSM can transit
from the “Outdoor” state to both “Home” and “Office” states non-
deterministically. What is worse, if the A-FSM chooses to transit to
the “Home” state, it may transit back to the “Outdoor” state immedi-
ately as the predicate of the rule “DeactivateHome” is also satisfied.
When it encounters the same non-deterministic choice again, by
sticking with the old choice, it may repeat the previous meaning-
less adaptation cycle as marked in Fig. 2. In this case, the checker
will report that a non-deterministic adaptation would occur at
the “Outdoor” state under the triggering situation described by the
truth value vector example, and this non-determinstic adaptation
may further result in unstable adaptations. After that, the checker
proceeds to check “Home” and “Office” states.

Author's personal copy

Y. Liu et al. / The Journal of Systems and Software 86 (2013) 854– 867 857

Table 1
Adaptation rules for the example application.

Rule name Current state Predicate New state Actions Priority level

ActivateHome Outdoor WiFiHome∨(GPSon∧LOCHome) Home Set favorite song as ring tone 1
DeactivateHome Home |GPSon∧¬LOCHome Outdoor Enable vibration and loud ring volume 2
ActivateOffice Outdoor WiFioffice∨(GPSon∧LOCoffice) Office Enable silent mode 1
DeactivateOffice Office GPSon∧¬LOCoffice Outdoor Enable vibration and loud ring volume 1

Propositional atom Explanation
GPSon True if and only if GPS is enabled
LOCHome(LOCoffice) True if and only if GPS reports current location as “Home” (“Office”)
WiFiHome(WiFioffice) True if and only if the phone is connected to the access point “HomeWiFi” (“OfficeWiFi”)

Such an exhaustive search guarantees the absence of false neg-
atives in fault detection. However, it can report a long list of faults
containing many false positives. We consider a reported fault as a
false positive if its triggering situation can never happen in the appli-
cation’s specific running environment. For instance, the fault detected
in the running example is a false positive for those users who do
not live near their company.

3. Approach

In this section, we introduce our approach in detail. We first
present how to automatically derive domain and environment
models, and concretely formulate them as deterministic and prob-
abilistic constraints. We then show how to utilize these constraints
together with a dynamic fault ranking technique to systematically
process the fault reports generated by existing static model check-
ers for achieving effective adaptation fault detection.

3.1. Technique overview

RBAs allow users to customize their application behavior by con-
figuring adaptation rules. The rules can be reconfigured when users
have new requirements (e.g., when switching their working envi-
ronments). The state-of-the-art static model checker (Sama et al.,
2008, 2010a) can be applied to analyze whether the configured
rules would introduce adaptation faults. The static checker exhaus-
tively explores an A-FSM’s state space and would not miss any
potential fault. However, such completeness is not meaningful as a
large proportion of reported faults could be spurious. Our approach
mitigates this false positive problem by leveraging the domain
and environment models derived for an RBA. The domain model
consists of the internal correlations between propositional atoms,
which capture an RBA’s internal adaptation logic. The environment
model comprises the external correlations between propositional
atoms, which capture the hidden features of an RBA’s running envi-
ronment.

Some internal correlations (e.g., the logical inconsistency
between fastDriving and slowDriving) are statically derivable from
an RBA’s adaptation rules using constraint solving techniques. We
formulate these correlations as deterministic constraints, which
can be used to filter out false positives from a list of faults3 as
we discussed in Section 1. However, internal correlations may
involve sophisticated semantics, making their inference beyond
the deduction capability of general constraint solving techniques.
For example, no existing constraint solvers can infer the seman-
tic entailment relationship between LOCOffice and GPSOn. Similarly,
external correlations vary with users and RBAs’ running envi-
ronments, and cannot be statically inferred. We therefore take a
probabilistic path to infer these two types of correlations, which
will be collectively referred to as “likely correlations” hereafter.

3 Deterministic constraints can also be used to reduce the search space of the
A-FSM model. See the related study (Sama et al., 2010a) for details.

More specifically, we perform pattern-based data mining over envi-
ronmental information collected during an RBA’s runtime to infer
likely correlations. They are then formulated as probabilistic con-
straints with different confidence values to help rank the faults that
cannot be classified as false positives by deterministic constraints.

Fig. 3 gives a clear overview of the workflow of our model
derivation and fault report processing approach. By pruning
false positives using deterministic constraints and ranking any
remaining faults using probabilistic constraints, true positives can
be promoted to the top of the fault list. When faults are presented to
users, they typically inspect a few top-ranked ones to understand
potential abnormal adaptations and consider solutions. Each fault
report contains actionable information regarding the fault type and
the situation that triggers it. This facilitates users to validate a fault
by judging the feasibility of its triggering situation. The validation
made by users is then used as feedback to dynamically adjust the
confidence values of probabilistic constraints and re-rank unin-
spected faults so that true positives can be ranked more favorably.
By doing so, the users’ fault inspection effort is further minimized.

In the remainder of this section, we give details about our auto-
mated correlation (formulated as constraints) inference algorithm
and dynamic fault ranking strategy. To facilitate correlation infer-
ence, our approach first statically analyzes an RBA’s adaptation
rules to derive the set of propositional atoms, denoted as P.

3.2. Inference of deterministic constraints

Internal correlations model an RBA’s adaptation logic, and con-
stitute our domain model. Our approach analyzes propositional
atoms in pairs to derive internal correlations. Specifically, we detect
inconsistent truth value vectors of a given propositional atom pair
(p(x), p′(y)). An inconsistent truth value vector is an infeasible
truth value combination of the concerned propositional atoms. If
such truth value vectors are discovered, they can be formulated
as deterministic constraints, which should always be satisfied, to
prune false positives. For example, knowing that p(x) and p′(y) are
logically inconsistent (cannot both be true) helps formulate the
following constraint.

p(x) → ¬p′(y) (or equivalently ¬p(x) ∨ ¬p′(y))

As mentioned in Section 2.3, we consider a fault’s triggering sit-
uation as a truth value vector of the concerned propositional atoms.
We define that a fault F violates a constraint c if and only if c is evaluated
to be false using F’s triggering situation (meaning that this situation is
internally inconsistent and therefore infeasible in practice). If such
a violation is detected, the corresponding fault can be classified
as a false positive. By doing so, we only remove faults that can be
proved to be false positives, and thus guarantee that our approach
processes fault reports in a sound way.

In order to discover the aforementioned constraint, we rely
on the CHOCO constraint solver (Choco, 2012) to deduce that
¬p(x)∨¬p′(y) is a tautology (In other words, it is infeasible for p(x)
and p′(y) to hold simultaneously). Fig. 4 presents a straightforward

Author's personal copy

858 Y. Liu et al. / The Journal of Systems and Software 86 (2013) 854– 867

Association Rule

Learner

Environmental

information

 Domain Model

Internal Correlations

Beyond CST’s Capability

Internal Correlations
Derivable by CST

 Environment Model

External Correlations

Constraint Solver

Adaptation Rules

Deterministic Constraints

(for false positive pruning)

Probabilistic Constraints

(for fault ranking)

Model Checker

Reported Faults

Faults that remain after

pruning false positives

Ranked faults

Constraint

Formulation

Fig. 3. Model derivation and fault reports processing workflow: “CST” stands for “Constraint Solving Techniques”.

Algori thm: Deter ministic Cons train t Inference

Input: P : a set of propos itional atoms

Output: C : a se t of deter ministic con straints

1: fo r eac h un order ed pair (p(x) , p’(y)), where p(x) , p’(y) �P and p(x) ≠ p’(y)

2: if x and y refer to the same cont ext va riable // int ernal co rrelation

3: if ¬(p(x) ^

^

^

^

p’(y)) is a tautol ogy

4: add it to C // truth valu e vector (true , true) is in cons istent

5: end if

6: if ¬(p(x) ¬p’(y)) is a ta utology

7: add it to C // truth valu e vector (true, false) is inconsi stent

8: end if

9: if ¬(¬p(x) p’(y)) is a ta utology

10: add it to C // truth valu e vector (false, true) is inconsis tent

11: end if

12: if ¬ (¬p(x) ¬ p’(y)) is a tautol ogy

13: add it to C // truth valu e vector (false, false) is incon siste nt

14: end if

15: end if

16: en d for

Fig. 4. Deterministic constraint inference algorithm.

algorithm for inferring different types of deterministic constraints.
It enumerates all unordered pairs of distinct propositional atoms.
For each of such pairs (p(x), p′(y)), if x and y refers to the same
context variable (i.e., p(x) and p′(y) are internally correlated), then
Choco tries to discover infeasible truth value combinations of the
two atoms. If they are discovered, the algorithm formulates them
as deterministic constraints.

Algorithm discussion: The algorithm performs pairwise analyses.
In the worst case, the time complexity is O (|P|2 × T), where T is the
timeout limit for a constraint solver to finish a proof. We show later
in our experiments that this complexity is affordable as the number
and size of the rules are typically limited for ordinary users.

From the algorithm, we can also see that our inferred determi-
nistic constraints are binary relations. We could certainly explore
deterministic constraints of a more complex form (e.g., ternary rela-
tions). However, that simply shifts the burden to the constraint
solvers. We later demonstrate that binary relations are a good
tradeoff between efficiency4 (i.e., how much resource is needed

4 We are concerned with the efficiency of deriving constraints because the ideal
platform to deploy our technique is a mobile device which typically has constrained
resources.

to infer them) and performance (i.e., how good they are at pruning
false positives).

3.3. Inference of probabilistic constraints

Despite the advances in constraint solving techniques, exist-
ing tools like Choco (Choco, 2012) are still limited in deducing
semantic internal correlations. Besides, external correlations can-
not be inferred statically due to environmental dynamics (recall
the definition of external correlation in Section 2.1). Therefore,
we statistically analyze the dynamically collected environmental
information to infer the following two types of likely correlations:

• Type 1. Internal correlations whose deduction is beyond the capa-
bility of existing constraint solvers;

• Type 2. External correlations that are inherently probabilistic.

3.3.1. Projecting environmental information
Environmental information is a collection of data sensed by an

RBA at runtime (e.g., location, joined network etc.). It captures the
features of an RBA’s running environment, and therefore is cru-
cial for constructing the environment model. As noise inevitably
exists in these sensed data, environmental information may contain

Author's personal copy

Y. Liu et al. / The Journal of Systems and Software 86 (2013) 854– 867 859

�

�

�

0.92
0.2

0.85

0.37

0.52
0.6

Fig. 5. An example constraint graph.

inconsistencies (Xu and Cheung, 2005). For instance, it is possible
for a mobile device’s GPS module to report its current location as
“Gym” while this device is connected to a wireless network with
the identifier “LibraryWifi”. To enhance the quality of environmen-
tal information, our approach relies on Cabot (Xu et al., 2004), a
context management middleware, to resolve such inconsistencies
with our best effort.

After inconsistency resolution, the environmental information
is a collection of entries recording the latest values of environ-
mental attributes (e.g., Location = “Home”, Network = “HomeWifi”,
etc.). Such raw data is not convenient for statistical analysis. As we
are interested in inferring likely correlations between propositional
atoms, our approach converts the environmental information into
a dataset of truth value vectors by projecting it onto the proposi-
tional atom set (i.e., the set P). Specifically, we use each entry in the
environmental information to evaluate the propositional atoms in
P, and store the Boolean outcomes as our truth value vectors.

3.3.2. Organizing probabilistic constraints
Likely correlations are formulated as probabilistic constraints in

our approach. For example, LOCOffice and GPSOn are likely correlated:
if LOCOffice is evaluated to be true, then GPSOn is likely to be evaluated
to be true. By statistically analyzing the environmental information,
we can infer the correlation’s probability (quite high). Then this cor-
relation can be used as a constraint with the confidence value set to
this correlation’s probability. From now on, we use the terms likely
correlation and probabilistic constraint interchangeably with the
same meaning. In our approach, we organize all such probabilistic
constraints in a weighted directed graph, called constraint graph. It
is a directed graph because the correlation between two proposi-
tional atoms is not necessarily bi-directional (e.g., the correlation
between LOCOffice and GPSOn). Formally, we define a constraint graph
as a tuple G = < V, E, W>:

• V is a set of vertices. Each propositional atom p(x) ∈ P is mapped to
two vertices in V. One vertex represents the positive truth value
assignment of p(x), denoted p(x)
. The other vertex represents
the negative truth value assignment of p(x), denoted p(x)⊥.

• E is a set of ordered pairs of vertices, called edges. An edge
(vi, vj) is associated with a likely correlation between vi’s and
vj’s corresponding propositional atoms. For example, the edge
for the aforementioned likely correlation starts from the vertex
LOCOffice
, and ends at the vertex GPSOn
.

• W is a matrix of numerical values representing the weight of each
edge. An edge’s weight indicates the probability of the correlation
associated with this edge (i.e., also the confidence value of the
corresponding constraint).

Fig. 5 presents an example constraint graph. The propositional
atoms used in the graph have been defined earlier in Table 1.
The dashed edge represents the aforementioned probabilistic con-
straint: if LOCOffice holds, then GPSOn also holds. The confidence
value of this constraint is 0.92 (highly probable). In the following

Table 2
Example dataset of truth value vectors.

Truth value vector WiFiOffice WiFiHome GPSOn LOCOffice LOCHome

tv1 True False False False False
tv2 False False True True False
tv3 True False True True False
tv4 False False False False True
tv5 False False False True False

subsection, we show how the confidence value of a probabilistic
constraint can be computed.

3.3.3. Computing constraint confidence values
In the data mining area, association rule learning is a popular

and well-studied technique for discovering interesting relations
between variables in a large dataset (Alpaydin, 2010). In our
approach, probabilistic constraints model the correlations between
propositional atoms. Therefore, association rule learning can be
naturally adapted to compute the confidence values of our proba-
bilistic constraints. In our problem, P is a set of propositional atoms,
and the association rules are in the following form:

(p(x) = a) ⇒ (p′(y) = b), where p(x), p′(y) ∈ P, and a, b ∈ {true, false}
This indicates that if p(x) has the truth value a, then p′(y) is likely

to have the truth value b. This form of association rule corresponds
to the probabilistic constraints in our work. Therefore, our objec-
tive is to learn the confidence of such association rules via mining
a dataset of truth value vectors, which is obtained by projecting
environmental information. Each vector in the dataset specifies the
truth value assignments to the propositional atoms in P.

We adapt a widely used support-confidence framework
(Agrawal et al., 1993) to compute the confidence values of prob-
abilistic constraints. We explain the concepts of support and
confidence below, and use an example dataset in Table 2 to illustrate
how to compute them.

• The support supp (p(x) = a) is defined on the dataset of truth value
vectors, and gives the proportion of those truth value vectors that
contain the occurrence of p(x) = a. For example, from Table 2, we
can compute supp(LOCOffice = true) = 3/5 = 0.6.

• The confidence of an association rule (p(x) = a) ⇒ (p′(y) = b) is
defined as the probability of observing this rule’s consequent
p′(y) = b in the dataset of truth value vectors under the condi-
tion of observing this rule’s antecedent p(x) = a. Eq. (1) gives the
formula for computing the rule’s confidence.

conf ((p(x) = a) ⇒ (p′(y) = b))

= pr(p′(y) = b|p(x) = a)

= supp(p(x) = a)&&(p′(y) = b)
supp (p(x) = a)

(1)

For example, from Table 2, we can compute conf
((LOCOffice = true) ⇒ (GPSOn = true)) = 0.4/0.6 = 0.67. This indicates
that the probabilistic constraint “if LOCOffice holds, then GPSOn also
holds” has a confidence value of 0.67. This example is only for
illustration purposes. In practice, due to inevitable noise, such
an inferred probabilistic constraint needs the support of at least
tens of truth value vectors in order to be considered statistically
significant.

3.4. Dynamic fault ranking

Fault ranking complements static model checking techniques
that may suffer from false positives. A good ranking scheme is
able to rank the most likely true positives to the top of a fault

Author's personal copy

860 Y. Liu et al. / The Journal of Systems and Software 86 (2013) 854– 867

Ranking Engine

?
All faults

Ranked/r e-ranked fault s Confir med faults

(true positi ves)

Rejected faults

(false positi ves)

User Inspect ion

(A few to p ra nked faults)

Feedback about those inspected faults (confirmed or rejected)

Informati on gain
based re finement

Probabilit y based
ranking

?

Fig. 6. An iteration in the dynamic fault ranking process.

list, while relegating highly possible false positives to the bottom.
Generally speaking, fault ranking can be categorized into two
types: static fault ranking and dynamic fault ranking. Static fault
ranking associates each fault with a fixed probability of being
a true positive (or probability for short) (Kremenek and Engler,
2003). Based on these fixed probabilities, all faults are ranked and
presented to users for inspection. During inspection, the ranking
order of these faults remains unchanged. On the contrary, dynamic
fault ranking allows each uninspected fault’s probability to be
dynamically tuned (Kremenek et al., 2004) according to users’
feedback about the inspected faults (confirming their validity or
rejecting them as false positives). This allows more true positives
to be re-ranked to the top of the fault list, and at the same time
more false positives to be re-ranked to the bottom.

In this section, we present our dynamic fault ranking technique,
which requires little manual effort. Our dynamic ranking process
works in an iterative way as illustrated in Fig. 6. It starts when a
list of faults is generated and ends when all faults are inspected or
users choose to terminate it. In each iteration, our ranking engine
ranks all faults before presenting them to the users. Users typically
choose the top ranked faults for inspection. They can confirm the
validity of these faults or reject them as false positives. Since top
ranked faults are few in number, users can afford to validate them
manually. Our ranking technique leverages the validation results
(i.e., these inspected faults are confirmed or rejected) as feedback
to re-rank remaining uninspected faults. This allows our technique
to further minimize user’s effort in fault inspection by favorably
re-ranking the faults that are more likely to be real among the unin-
spected faults. In the following, we introduce our ranking scheme
in Section 3.4.1, and discuss how to leverage the validity feedback
of the inspected faults to re-rank the remaining uninspected faults
in Section 3.4.2.

3.4.1. Ranking scheme
The selection of a ranking scheme can largely affect the qual-

ity of fault ranking. As illustrated in Fig. 6, we choose a ranking
scheme that works in two phases: (1) it first ranks all faults based
on their probabilities; (2) it then leverages information gain to refine
the ranking order, in particular for those top ranked faults when
their probabilities are very close to each other. Before introducing
these two ranking metrics (i.e., probability and information gain),
we clarify two characteristics of our approach below:

• Characteristic 1. A probabilistic constraint describes a likely cor-
relation between two propositional atoms. A fault’s triggering
situation is a truth value vector for its concerned propositional
atoms. Therefore, a fault F relates to a probabilistic constraint c
only when constraint c’s propositional atoms are involved in fault
F’s triggering situation.

• Characteristic 2. Our earlier constraint graph offers a set of prob-
abilistic constraints labeled with their confidence values. A fault
may violate some of these constraints (recall the constraint vio-
lation definition in Section 3.2).

With these two characteristics, we use a weighted average func-
tion (Eq. (2)) to measure how strong a fault F conflicts with a set
LC of probabilistic constraints, denoted ConflictStrength(F, LC). This
function puts more emphasis on those constraints with high con-
fidence values. In Eq. (2), conf(c) represents the confidence that a
probabilistic constraint c is a real constraint (defined earlier in Eq.
(1)). Functions rel(F, c) and vio(F, c) test whether a fault F relates to
or violates a probabilistic constraint c, respectively (see the above
two characteristics). Note that vio(F, c) implies rel(F, c) as a fault can
only violate its related constraints.

ConflictStrength(F, LC) =
∑

ci ∈ LC (conf (ci) · vio(F, ci))∑
ci ∈ LC (conf (ci) · rel(F, ci))

, where

rel(F, ci) =
{

1, if F relates to ci

0, otherwise

, vio(F, ci) =
{

1, if Fviolatesci

0, otherwise

(2)

We then define a fault F’s probability of being a true positive (or
probability for short; our first ranking metric) with respect to a set
LC of probabilistic constraints PBT(F, LC) in Eq. (3). All faults are first
ranked in the decreasing order of their probabilities.

PBT(F, LC) = 1 − ConflictStrength(F, LC) (3)

However, we often observe that the probabilities of the top
ranked faults are very close to each other with a difference of less
than 0.01. This suggests that using the ranking metric of proba-
bility alone is inadequate. As such, we further refine the ranking
order for those top ranked faults before presenting them to users.
Our insight is that inspecting two different faults would contribute
different levels of useful information that can help better re-rank
other uninspected faults. Here, “useful” can be interpreted based
on the following two observations:

• Observation 1. If a fault F can later be confirmed by users as a true
positive, the probabilistic constraints that F has violated become
invalid (because a true fault should not violate any valid con-
straint). Their confidence values can thus be set to 0.

• Observation 2. If a fault F can later be rejected by users as a false
positive, the confidence values of the probabilistic constraints
that F has violated should increase (because these constraints
have helped identify false positives). The choice of the increment
value depends on the quality of the environmental information.
If the environmental information is less subject to noise, a larger
increment value can be used. Otherwise, the value should be
chosen conservatively (in our experiment, we set the value to
0.05).

With these two observations, we adopt an idea that was inspired
by Kremenek et al.’s work (Kremenek et al., 2004) for ranking
refinement: A fault whose inspection can offer a larger amount
of useful information should be chosen as the next candidate for
inspection. We elaborate this idea below.

In information theories, entropy measures the uncertainty of a
random variable. The mutual information I(X; Y) between two ran-
dom variables X and Y quantifies the amount of information X can
tell about Y in terms of how much Y’s uncertainty can be reduced
due to the knowledge of X (Cover and Thomas, 2006). The follow-
ing Eq. (4) formally defines such mutual information. H(Y) in Eq.
(4) is variable Y’s entropy (i.e., uncertainty) before knowing vari-
able X’s value. Conditional entropy H (Y|X) represents the remaining
uncertainty of variable Y after knowing variable X’s value.

I(X; Y) = H(Y) − H(Y |X) (4)

We can generalize this metric to quantify how much informa-
tion we can get about the remaining faults U, if a fault F is the next

Author's personal copy

Y. Liu et al. / The Journal of Systems and Software 86 (2013) 854– 867 861

candidate to be inspected. The generalized metric information gain
is our second ranking metric. We denote it as I(F; U).

I(F; U) =
∑
Ui ∈ U

I(F; Ui)

=
∑
Ui ∈ U

(H(Ui) − H(Ui|F))

=
∑
Ui ∈ U

⎛⎝ ∑
f ∈ {true,false}

∑
pr(F = f)(H(Ui) − H(Ui|F = f))

⎞⎠
(5)

Eq. (5) is derived from Eq. (4) to measure information gain. For
each remaining fault Ui ∈ U, I(F; Ui) represents the amount of infor-
mation that a fault F can tell about the fault Ui. Specifically, I(F;
Ui) quantifies how much Ui’s uncertainty can be reduced if fault
F’s validity is known (i.e., H(Ui) − H(Ui|F)). From our two observa-
tions, one can see that whether F is confirmed (F = true) or rejected
(F = false) later, fault Ui’s probability would be affected (so would
fault Ui’s uncertainty). This is because the confidence values of the
probabilistic constraints fault F violated would be adjusted. Then
the information gain I(F; U) of fault F can simply be defined as the
summation of all such I(F; Ui), where Ui ∈ U. We omit more deriva-
tion details here. Interested readers can refer to Cover et al.’s work
(Cover and Thomas, 2006) for details about entropy computation.

In brief, our ranking scheme works as follows: when two ranking
metrics are used together, faults are first ranked by their probabil-
ities. If the probabilities of those top ranked faults are very close to
each other, then the faults that carry relatively larger information
gain values would be promoted for breaking such tie cases.

3.4.2. Leveraging feedbacks
We have explained how to rank a list of faults according to

their probabilities and information gains. These ranked faults are
presented to users for inspection. Users can freely validate a few
top ranked faults. Their validation feedbacks (i.e., the faults are
confirmed or rejected) would be used to improve the ranking of
remaining faults.

To understand how it works, one should note that the probabil-
ity of a fault relies on the confidence values of the probabilistic
constraints the fault relates to (see Eq. (3)). Our preceding two
observations in Section 3.4.1 indicate that the user’s feedback
would help adjust the confidence values of such probabilistic con-
straints. Therefore, the probabilities of the remaining (uninspected)
faults would change accordingly. This leads to a re-ranking of these
faults, thus completing one iteration in our dynamic fault ranking
process. More iterations can be conducted as required. In practice,
confirming and fixing a fault may greatly reduce the number of
remaining faults as we will show in Section 4.

4. Evaluation

In this section, we present the empirical evaluation of our
approach. First, we describe the implementation of AFChecker in
Section 4.1. Next, we present our evaluation, including the research
questions, the experimental setup and the evaluation results in
Sections 4.2–4.6. Finally, we discuss threats to validity in Section
4.7.

4.1. Implementation

We implemented our approach as a publically available Java
library named AFChecker.5 AFChecker takes as input a set of

5 We make AFChecker and its documentation publically available at
http://www.cse.ust.hk/∼andrewust/afchecker/index.html

adaptation rules, and outputs a list of detected adaptation faults.
It has three major components:

• Model checker. The central component of AFChecker is a model
checker based on the state-of-the-art technique (Sama et al.,
2010a). The model checker derives a state transition model
from a set of user-configured adaptation rules and verifies the
model to detect five common types of adaptation faults: (1)
non-deterministic adaptations, (2) dead rule predicates, (3) dead
states (meaning that no rules can be satisfied in these states), (4)
adaptation races, and (5) unreachable states (meaning that the
states cannot be transitively reached from other states).

• Constraint inference engine. The constraint inference engine of
AFChecker infers both deterministic and probabilistic constraints.
AFChecker relies on the Choco constraint solver (Choco, 2012) to
derive deterministic constraints by analyzing the propositional
atoms in the user-configured adaptation rules. AFChecker also
embeds an association rule learner to infer probabilistic con-
straints by analyzing the environmental information.

• Fault report processor. AFChecker’s fault report processor pro-
cesses the fault reports generated by its underlying model
checker. It prunes a subset of fault reports using determi-
nistic constraints, and prioritizes the remaining reports using
probabilistic constraints. In our implementation, AFChecker can
interact with users in two modes: (1) non-interactive mode, and
(2) interactive mode. In the non-interactive mode, the ranking
of fault reports is static and AFChecker simply generates a list of
prioritized fault reports for users’ inspection. In the interactive
mode, the ranking of fault reports is dynamic. AFChecker itera-
tively presents a few highly possible faults for users’ inspection
and asks users to confirm their validity. Based on users’ feedbacks,
AFChecker dynamically adjusts the probability of the uninspected
faults and favorably re-ranks them. By such interaction, users can
quickly realize the misconfigurations in their configured adapta-
tion rules.

4.2. Research questions

We evaluate AFChecker using controlled experiments, which are
designed to study the following three research questions (RQ1–3):

• RQ1: Are our derived deterministic constraints effective for prun-
ing false positives in adaptation fault detection?

• RQ2: Are our inferred probabilistic constraints effective for
ranking reported faults? How does collected environmental
information affect our fault ranking quality?

• RQ3: Can our dynamic ranking strategy effectively improve the
quality of our fault ranking?

Among these research questions, RQ1 and RQ2 are designed for
evaluating the practical usefulness of our extracted domain model
and environment model. RQ3 is for evaluating the effectiveness of
our dynamic ranking strategy.

4.3. Experimental setup and design

We selected two popular RBAs, PhoneAdapter (2012) and Tasker
(2012) as our experimental subjects. For PhoneAdapter, we used
the same adaptation rules as in the related study (Sama et al.,
2010a). For Tasker, one of the top 10 awardees from the Google
Android Developer Challenge 2 (ADC2) (Google ADC 2 Winners,
2009), we used the adaptation rules (listed in Table 3) that have
been discussed in Tasker’s forum with slight modifications for
syntactic reasons (Rule Discussion, 2012a,b,c,d,e). The use of propo-
sitional atoms in these rules is self-explanatory (refer to Table 1 for

Author's personal copy

862 Y. Liu et al. / The Journal of Systems and Software 86 (2013) 854– 867

Table 3
Adaptation rules for Tasker.

Rule name Current state Predicate New state Actions Priority

ActivateHome Outdoor WiFiHome∨(GPSon∧LOCHome) Home Set user’s favorite song as ring tone Normal
ActivateOffice Outdoor WiFioffice∨(GPSon∧LOCoffice) Office Enable silent mode with vibration on High
ActivateOutdoor Office, Home GPSon∧¬LOCoffice∧¬LOcHome Outdoor Enable vibration and loud ring volume Normal
ActivateMeeting Office TimeMeeting Start Meeting Start recording audio High
DeactivateMeeting Meeting TimeMeeting End Office Stop recording audio High
ActivateRunning Outdoor GPSon∧LOCpark∧SpeedFast Running Start counting steps (use step counter applications) Low
DeactivateRunning Running GPSon∧LOCpark∧SpeedSlow Outdoor Stop counting steps Low
ActivateSleeping Home TimeMidnight Sleeping Enable airplanemode High
DeactivateSleeping Sleeping TimeMorning Home Disable airplane mode and start alarm High
ActivatePowerSaving Outdoor BatteryLow PowerSaving Disable network connection Normal
DeactivatePowerSaving PowerSaving ¬BatteryLow Outdoor Enable network connection Normal

examples). We ran these two RBAs on an HTC Desire S510e smart-
phone for two weeks, and collected the phone’s raw sensory data
every 5 min. From them, we obtained a dataset with 1517 pieces of
environmental information, which were converted into truth value
vectors for experimental purposes. Our following experiments with
AFChecker ran on a Macbook Pro with a 2.4 GHz dual-core CPU and
4 GB RAM. For AFChecker’s association rule learning algorithm, we
set the support and confidence thresholds to 0.25 and 0.5, respec-
tively. We also set the timeout limit for constraint solving to 200 ms.
All experiments for PhoneAdapter finished within 800 ms and cost
less than 26 MB memory. All experiments for Tasker finished within
1100 ms and cost less than 34 MB memory. As the number and size
of the rules are limited for ordinary users, such analysis overhead
makes it possible for RBA developers to integrate our AFChecker
into their applications.6

As mentioned in Section 3.1, AFChecker processes the faults
reported by its underlying model checker to mitigate the false
positive problem. Before evaluating its effectiveness, we need to
manually validate all reported faults (i.e., determine the ground
truth). Since there were many faults reported, we first analyzed all
adaptation rules of both RBAs to manually infer their constraints
with best effort, and then used the inferred constraints to identify
false positives in all reported faults. We note that inferring such
constraints requires profound analysis and exhaustive search. Even
for RBAs with only ten rules, users may need to analyze hundreds
of candidates to recognize constraints. Hence, it is impractical to
infer every constraint manually. As such, we carefully validated
each fault that does not violate any inferred constraint to confirm
or reject it. With such ground truth, we then designed three sets
of experiments to answer our aforementioned research questions
RQ1–3.

Experiment set 1. To answer research question RQ1, we ran
AFChecker to derive deterministic constraints, and then used them
to classify reported faults. We conducted a study on the number
of false positives identified by these constraints. The results are
presented in Section 4.4.

Experiment set 2. To answer research question RQ2, we ran
AFChecker to infer probabilistic constraints, and then used them
for fault ranking. Note that fault ranking is conducted after remov-
ing false positives using deterministic constraints. We gradually
increased the size of the dataset used for learning the confidence
values of probabilistic constraints, and studied how the qual-
ity of our fault ranking would be affected accordingly. We used
Discounted Cumulative Gain (DCG) to measure the overall fault
ranking quality (Järvelin and Kekäläinen, 2002). DCG is a metric
often used in information retrieval for evaluating the effectiveness
of web search engine algorithms, and also suitable for measuring
the quality of a general ranking algorithm. Let us briefly review

6 We provide a tutorial about how to use AFChecker at
http://www.cse.ust.hk/∼andrewust/afchecker/tutorial.html

DCG’s basic idea. A list contains many entries for ranking and each
entry originally has a relevance value. A good algorithm is supposed
to highly rank the entries with high relevance values. After ranking,
one would measure the gain of each entry, which is proportional to
this entry’s relevance value, and inversely proportional to its posi-
tion in the ranked list. Then the gain accumulated from the first
entry to the last entry in the ranked list (called the DCG value) can
be used to measure the quality of the whole ranking. We formally
define the DCG metric in the following Eq. (6). reli represents the
relevance value of the entry at position i in a ranked list, and p is
the size of this list.

DCGp = rel1 +
p∑

i=2

reli
log2i

(6)

In our case, an entry’s relevance can be set to 1 if this entry is
a true positive and 0 for a false positive. A perfect ranking with
all true positives ranked before any false positive would yield an
ideal DCG value. We use this value as the baseline and normalize it
to 1.00. The results presented in Section 4.5 would be normalized
accordingly for comparison. In such a setting, a higher DCG value
would indicate a better overall ranking quality.

In practice, users are likely only interested in top ranked faults,
therefore we also measured the percentage of true positives in the
selected top ranked faults. Measurements were made based on the
top 26.5% and 10% faults for PhoneAdapter, and top 21.7% and 10%
faults for Tasker, respectively. We explain why we selected these
percentages in Section 4.5.

Experiment set 3. To answer research question RQ3, we applied
our dynamic fault ranking strategy and automated its iterative pro-
cess. When a list of faults was ranked, its top ranked fault was
selected for inspection. With the support of our earlier determined
ground truth, this fault was confirmed or rejected. Such feedback
was then used to re-rank the remaining faults. This process ter-
minated after all faults were inspected, and we thus generated
a whole ranking for all faults according to their inspection order
(i.e., being inspected earlier means a higher ranking). After that, we
computed the DCG value for this whole ranking, and measured the
percentages of true positives in the selected top ranked faults for
ranking quality comparisons. In some scenarios, users may choose
to immediately fix confirmed faults in an inspection. We, there-
fore, conducted an extra experiment to study how the number of
remaining faults would change if one fixes the top three confirmed
faults reported by our dynamic fault ranking technique. We report
these results in Section 4.6.

4.4. Pruning false positives by deterministic constraints

Fig. 7 presents our experimental results for answering research
question RQ1. It reports about two RBAs: (1) the numbers and
percentages of true and false positives in all reported faults,
(2) the numbers and percentages of those faults that can be

Author's personal copy

Y. Liu et al. / The Journal of Systems and Software 86 (2013) 854– 867 863

PhoneAdapter

a b
c d

616(78.6%)

168(21.4%) 151(19.3%)

465(59.3%)

Tasker

a b
d

123(12.9%)

831(87.1%)

445 (46 .6%)

386(40.5%)

c

True positives (a) False positives (b)

False positi ves removed by deterministic constraints (c)

Remaining fals e positives (d) Note that (b) = (c) + (d)

We ca lculate the percentages against all reported faults (i.e., (a) + (b)) .

Fig. 7. Effectiveness of using deterministic constraints to prune false positives.

categorized as false positives using deterministic constraints
inferred by our AFChecker, and (3) the numbers and percent-
ages of remaining false positives after applying deterministic
constraints. For PhoneAdapter, there are a total of 784 faults
reported (non-deterministic and unstable adaptation faults). The
deterministic constraints derived by AFChecker helped prune 151
false positives from these 784 faults. For Tasker, the total number
of faults is 954, among which 386 were removed as false positives
using the deterministic constraints7 derived by our AFChecker.
These removed false positives account for 19.3% and 40.5% of
all reported faults for PhoneAdapter and Tasker, respectively.
This shows that deterministic constraints are useful for pruning
a lot of false positives. However, since there are many reported
faults, the remaining false positives still cause a serious problem.
As illustrated in Fig. 7, after applying deterministic constraints,
465 false positives in PhoneAdapter still remain, accounting for
73.5% of all remaining faults (465/(465 + 168) = 73.5%). For Tasker,
the situation is even worse, only 21.7% of the remaining faults
are true positives (123/(123 + 445) = 21.7%). In other words, users
would encounter only one or two real faults out of any randomly
inspected ten faults. Therefore, deterministic constraints are useful
but inadequate for the removal of false positives.

4.5. Ranking faults by probabilistic constraints

Figs. 8–10 present our experimental results for ranking the
remaining faults by probabilistic constraints. The results are for
answering research questions RQ2–3. We discuss RQ2 in this sec-
tion and RQ3 in Section 4.6. As mentioned earlier, we use the
DCG metric to measure the overall ranking quality. Fig. 8 com-
pares the DCG values for ranking results produced by: (1) our
fault ranking scheme with the dynamic ranking disabled (named
static ranking), (2) a random ranking algorithm, and (3) an ideal
algorithm for reference. We also report the percentages of true
positives of the top ranked faults for our two experimental sub-
jects in Figs. 9 and 10. We chose to study the percentage of true
positives in the top 26.5% faults (see Fig. 9) for PhoneAdapter
because the total of true positives occupy exactly 26.5% of the
remaining faults (168/(168 + 465) = 26.5%). For Tasker, this per-
centage becomes 21.7% (123/(123 + 445) = 21.7%). Using these two
percentages, the ideal ranking algorithm can achieve exactly 100%
for the measurement (larger percentages do not make sense as
there are no more true positives). We also studied the percent-
age of true positives in the top 10% faults (see Fig. 10) for the two
subjects. This is because we consider that it should be acceptable
for users to inspect up to 10% of faults (no more than 50 faults). We
garner several findings from Figs. 8 to 10:

7 These deterministic constraints include: (1) Locations are mutually exclusive
(only one of LOCHome , LOCOffice , LOCPark can hold at a time point); (2) The logical incon-
sistencies between: TimeMeetingStart and TimeMeetingEnd , TimeMidnight and TimeMorning ,
SpeedFast and SpeedSlow .

• First, as the dataset grows in size, the DCG values for all ranked
faults and the percentages of true positives in the top ranked
faults generally keep increasing. This indicates that more false
positives were relegated to the bottom of the fault list. As a larger
dataset can provide more information for our association rule
learner, the confidence values of the inferred probabilistic con-
straints become more reliable and stable as the dataset increases
in size. As a result, these constraints helped associate false posi-
tives with lower probabilities.

• Second, AFChecker’s inferred probabilistic constraints have
greatly improved our fault ranking quality. For instance, Fig. 8
shows that for a random ranking, its DCG values are around 0.50.
However, for our static ranking (using probabilistic constraints),
its DCG values can rise to 0.83. This result is close to the ideal rank-
ing (1.00). Figs. 9 and 10 report similar results. For example, with
more environmental information (i.e., a larger dataset), the per-
centage of true positives in top ranked faults can reach 71.5% (for
top 21.7% ranked faults) and 84.2% (for top 10% ranked faults) for
Tasker (see Figs. 9(b) and 10(b)). That is almost four times better
than a random ranking (15.4% and 17.5%, respectively).

• Third, as the size of the dataset grows, the quality of our fault
ranking increases quickly at the beginning, and then becomes rel-
atively stable later. This is understandable. At the beginning, with
more environmental information (i.e., a larger dataset), the con-
fidence values of the inferred probabilistic constraints become
more and more reliable. This helps rank false positives low (i.e.,
increasing the DCG value). When the size of the dataset grows
further, the confidence values of these constraints have become
relatively stable (i.e., no large change). This leads to only slight
variance in the ranking quality (i.e., an almost fixed DCG value).

We note that collecting a huge set of environmental infor-
mation may be impractical for two reasons. First, frequently
requesting updates from the sensors of a smartphone is very
energy-consuming. Second, a user’s physical environment tends
to change. Profiling environmental information over a very long
period may receive contradicting data, which can conversely
lower the quality of our fault ranking. According to our expe-
rience, collecting environmental information for a few days can
already improve the fault ranking quality substantially. For exam-
ple, Fig. 10(a) shows that a dataset of size 400 (corresponding to
about 4–5 days) can already improve the percentage of true posi-
tives in the top 10% faults to 66.7% (as compared to 22.2% by the
random ranking). Therefore, we suggest that if a user has already
used his application for a few days, then it would be very convenient
to quickly find whether his newly configured rules would cause
any adaptation faults by using our AFChecker. More importantly,
all reported faults are automatically ranked with good quality, by
presenting the most likely true positives at the top.

4.6. Dynamic ranking of reported faults

Figs. 8–10 also present our experimental results for evaluating
whether our dynamic ranking strategy can effectively improve the
fault ranking quality for PhoneAdpater and Tasker.

We observe that both the DCG values and the percentages of
true positives in the top ranked faults are clearly improved after
applying our dynamic ranking strategy (i.e., dynamic ranking), as
compared to our static ranking. For instance, in Fig. 9(b), the per-
centage of true positives in the top 21.7% faults for Tasker reaches
86.2% after enabling dynamic ranking. As a comparison, this per-
centage never exceeds 72.0% in the static ranking. We note that a
probabilistic technique may mistakenly associate a high confidence
value with a spurious constraint due to noise in the dataset. Our
dynamic ranking can effectively leverage a user’s manual inspec-
tion feedback to remove such spurious constraints (by setting their

Author's personal copy

864 Y. Liu et al. / The Journal of Systems and Software 86 (2013) 854– 867

0.83

0.50

0.92

0.40

0.50

0.60

0.70

0.80

0.90

1.00

100 300 500 700 900 1,100 1,300 1,500

D
C

G
 V

a
lu

e

Dataset Size

(a) PhoneA dapter

Static Ranking Rand om Rank ing Ideal Rank ing Dyn amic Ranking

0.79

0.50

0.89

0.40

0.50

0.60

0.70

0.80

0.90

1.00

100 300 500 700 900 1,100 1,300 1,500

D
C

G
 V

a
lu

e

Dataset Size

(b) Tasker

Fig. 8. Overall fault ranking quality.

69.6%

21.4%

87.5%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 300 500 700 900 1,100 1,300 1,500

P
e
r
ce

n
ta

g
e

o
f

T
ru

e
P

o
si

ti
v
e
s

Data set Size

(a) PhoneAdapter (26.5%)

Static Ranking Rando m Ranking Ideal Rank ing Dyn amic Rank ing

71.5%

15.4%

86.2%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 300 500 700 900 1,100 1,300 1,500

P
er

c
en

ta
g

e
o
f

T
r
u

e
 P

o
si

ti
v
es

Data set Size

(b) Tasker (21 .7%)

Fig. 9. Percentage of true positives in top 26.5% and 21.7% faults for PhoneAdapter and Tasker, respectively.

66.7%

82.5%

22.2%

92.1%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 300 500 700 900 1,100 1,300 1,500

P
er

c
en

ta
g

e
 o

f
T

ru
e
 P

o
si

ti
v
e
s

Data set Size

(a) PhoneAdapter (10%)

Static Ranking Random Ranking Ideal Ranking Dyn amic Ranking

84.2%

17.5%

93.0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 300 500 700 900 1,100 1,300 1,500

P
er

c
en

ta
g

e
o
f

T
ru

e
P

o
si

ti
v
e
s

Data set Size

(b) Tasker (1 0%)

Fig. 10. Percentage of true positives in top 10% faults for PhoneAdapter and Tasker.

confidence values to 0 according to our Observation 1 in Section
3.4.1). On the other hand, if a fault is rejected by the user, the
confidence values of the constraints this fault violates can instead
be increased, as they contribute to discovering false positives (our
Observation 2 in Section 3.4.1). In both cases, user inspection can
provide useful information (we used our ground truth to play
the role of user inspection in the experiments). Therefore, our
dynamic ranking can effectively improve the fault ranking quality.
The results in the three figures consistently confirm our expecta-
tions.

Finally, we additionally studied whether fixing confirmed faults
would change the number of remaining faults. We observe a signif-
icant decrease in the number of remaining faults in Fig. 11, where
the top three confirmed faults were fixed in turn. For example, the
number of remaining faults is reduced from 633 to 352 after fixing
the top three confirmed faults for PhoneAdapter (a scale factor of

approximately (633–352)/3 = 94 times). As our dynamic fault rank-
ing strategy faithfully follows a feedback-based paradigm (i.e., rank
faults, then inspect top faults, then fix confirmed faults, and then
re-rank remaining faults again), this result suggests the practical
usefulness of our dynamic ranking strategy. Such a large scale fac-
tor shows that the faults are closely correlated and fixing some of
them can immediately remove many others. Therefore, dynamic
fault ranking would be useful for practical adaptation fault detec-
tion and fixing. Users can use Sama et al’s model checking algorithm
(Sama et al., 2010a) together with our AFChecker to collectively find
such faults in practice.

4.7. Threats to validity

The validity of our experimental results may be subject to
some threats. One is the representativeness of the adaptation

Author's personal copy

Y. Liu et al. / The Journal of Systems and Software 86 (2013) 854– 867 865

633

422 408
352

568

393

300 288

0

100

200

300

400

500

600

700

Before
Insepc tio n

After Fixing 1st
Fault

After Fixing 2nd
Fault

After Fixing 3rd
Fault

N
um

be
r

of
 R

em
ai

ni
ng

 F
au

lt
s

How Fau lt Fi xes Change the Nu mber of Re maining Fau lts ?

PhoneAdapter

Taske r

Fig. 11. How fault fixes change the number of remaining faults.

rules used in Tasker. These rules were selected from Tasker’s
online forum, and adapted slightly for our experiments (syntac-
tic reasons) (Rule Discussion, 2012a,b,c,d,e). We confirmed in the
forum that users often configure similar rules for handling their
daily events. Table 3 lists these rules to enable interested read-
ers to repeat our experiments. Another potential threat is the
determination of the ground truth (i.e., deciding true or false
positives in the reported faults). We understand that a manual
process like this is essentially error-prone. To play it safe, we
asked two additional researchers to independently inspect all the
faults. We cross-validated their inspection results for consistency.
Finally, although two experimental subjects are not substantial,
we conducted a comprehensive study based on them to eval-
uate our AFChecker. We expect to conduct more experiments
to further evaluate AFChecker, and we will make it our future
work.

5. Related work

Our work closely relates to three research areas, namely, quality
assurance for context-aware applications, program invariant infer-
ence, and fault ranking. We discuss some representative pieces of
work from recent years.

Quality assurance for context-aware applications. Context-aware
applications have received increasing attention in recent years.
Many powerful middlewares, such as CARISMA (Capra et al., 2003),
SOCAM (Gu et al., 2004a), and EgoSpaces (Julien and Roman, 2006)
support the construction of these applications. However, their qual-
ity assurance faces unique challenges that need special treatment
(Cheng et al., 2009). First, these applications are continually driven
by their perceived contexts. Due to the inevitable noise, context
inconsistencies are common and should be detected in a timely
fashion so as to avoid abnormal application behavior. Our previous
work proposed techniques to efficiently detect context inconsisten-
cies when perceived contexts violate consistency constraints, and
resolve these inconsistencies automatically for guarding an appli-
cation’s quality (Xu and Cheung, 2005; Xu et al., 2010). Second,
when enhanced with context consistency management services,
an application may mix up the original contexts and their resolved
counterparts, leading to unexpected data flow changes. Tse et al.
(2004) first investigated this issue and reported its significance. Lu
et al. (2006, 2008) later measured the impact of such changes, and
proposed new testing adequacy criteria for addressing the dynam-
ics caused by these data flow changes. Wang et al. (2007) studied
similar data flow switching at context-aware program points, and
presented new test generation techniques to cover such switch-
ing. These pieces of work share similar observations with our work
by noticing the importance of the complex interactions between
an application and its running environment. Third, even if an
application’s contexts are managed to be consistent, this applica-
tion may still suffer from challenging faults. These faults manifest

themselves when certain context-aware services are composed
(Cubo et al., 2009), or result in an application crash or freezing
at runtime (Xu et al., 2012). The former type of fault is statically
identifiable from an application’s adaptation model. To search for
such faults, Sama et al. (2010a) proposed to use an adaptation
finite-state machine (A-FSM) to model rule-based context-aware
applications (also the target of this work). Their techniques exten-
sively search the A-FSM model for potential faults (including many
false positives as illustrated in this paper) by enumerative or sym-
bolic algorithms. For convenience, they assumed the availability
of global constraints for pruning those false positives in reported
faults. However, we found that adequately and precisely infer-
ring such constraints requires non-trivial efforts. Therefore, in this
paper we presented a hybrid approach to extracting a domain and
environment model represented by deterministic and probabilis-
tic constraints. These constraints can be used to effectively improve
the fault analysis quality (e.g., pruning false positives and ranking
true positives with higher scores). The latter types of faults only
manifest themselves into errors at runtime, and thus are beyond
the detection capability of Sama et al.’s technique. Our latest work
(Xu et al., 2012) systematically studied common types of such faults
by inspecting various failure reports. For their detection, we pro-
posed a technique that is able to precisely model a context-aware
application’s adaptation semantics and relate runtime errors to
responsible faults.

Program invariant inference. Our constraint inference relates to
program invariant inference techniques. Daikon (Ernst et al., 1999)
is a popular dynamic invariant inference tool. It relies on the exe-
cution traces of a large test suite, and then infers likely invariants
from these traces. However, these inferred invariants are typically
not so useful for our problem, due to its limited built-in program
invariant patterns. To address this problem, DySy, proposed by
Csallner et al. (2008), combines concrete executions of test cases
with their corresponding symbolic executions. Through this, DySy
is able to produce abstract conditions about program variables
that are satisfied in concrete executions. DySy can then signifi-
cantly increase the relevance of its inferred program invariants,
as well as reducing the number of test cases required for obtain-
ing satisfactory invariants. Both the invariants inferred by Daikon
or DySy seem to be correlations similar to those studied in this
paper. However, they differ in the sense that our external cor-
relations capture the hidden features of an application’s physical
environment, rather than those relationships internal to this appli-
cation.

Fault ranking. Finally, our work presented a dynamic fault rank-
ing strategy to prioritize reported faults. This is based on the
observation that existing fault detection techniques, in particu-
lar static analysis, usually produce a long list of suspicious faults
including numerous false positives (Kremenek and Engler, 2003).
Fault ranking is thus necessary for helping users decide which
faults to inspect first according to their probabilities of being
true positives (or severity). To conduct effective fault ranking,
Kremenek et al. (2004) observed that both true and false posi-
tives can cluster together due to code locality. They proposed
exploiting this clustering behavior to improve fault ranking qual-
ity. For example, their proposed z-ranking technique (Kremenek
and Engler, 2003) uses statistical analysis to cluster different
groups of false positives, resulting in a static ranking of all
faults. Later, they went on to explore a dynamic ranking strat-
egy, where user’s feedback is used to tune the original ranks
for faults. This inspired our dynamic ranking strategy. How-
ever, our work differs from their work in one fundamental
aspect. Their work requires a model (Bayesian network) to accu-
rately capture the clustering behavior of reported faults while
our work does not rely on the observation that faults tend to
cluster.

Author's personal copy

866 Y. Liu et al. / The Journal of Systems and Software 86 (2013) 854– 867

6. Conclusion and future work

In this paper, we presented a hybrid approach toward effective
adaptation fault detection for rule-based context-aware applica-
tions. We aim to support users to effectively inspect reported faults
by removing most false positives and prioritizing the remaining
ones. We achieved this by extracting a domain model and an
environment model from user-configured adaptation rules and an
application’s running environment. We also adopted a dynamic
ranking strategy to incorporate users’ inspection feedback to fur-
ther improve the fault ranking quality, and thus minimize users’
efforts in fault inspection.

We implemented our work into a publically available tool,
named AFChecker, and evaluated it through controlled experi-
ments based on two popular applications. The results confirmed
AFChecker’s usefulness in improving user’s fault detection and
inspection experiences.

Our evaluation has been restricted to two selected applications.
We plan to apply AFChecker to more applications and further vali-
date its effectiveness. We also plan to extend our work to more
types of context-aware applications, for example, those whose
adaptation rules are not necessarily expressed by the syntax in Sec-
tion 2.1. Such applications would be more flexible by allowing users
to freely specify rules with quantifiers or domain-specific functions.
Effective model checking techniques are required to address new
challenges and assist fault detection tasks for these applications.
Additionally, our work currently only considers those constraints
built on binary relationships. Although, our evaluation results sug-
gest that binary relations are effective enough in processing fault
reports, we need to further investigate whether mining certain
types of more complex constraints would better help detect faults.
Finally, the ideal platform to deploy our work is a mobile device.
Therefore, we plan to optimize our techniques to make them more
cost-effective in terms of CPU usage and memory consumption, and
we are already heading in this direction.

Acknowledgements

This research was partially funded by Research Grants Coun-
cil (General Research Fund 612210, 612309) of Hong Kong, and by
National Basic Research Program (973 program 2009CB320702),
National High-Tech Research & Development Program (863 pro-
gram 2011AA010103), and National Natural Science Foundation
(61100038, 61021062) of China. Chang Xu was also partially sup-
ported by Program for New Century Excellent Talents in University,
China (NCET-10-0486).

We thank Shauna Dalton for her careful proof-reading. We also
thank anonymous reviewers for their valuable comments and sug-
gestions on earlier versions of this paper.

References

Agrawal, R., Imieliński, T., Swami, A., 1993. Mining association rules between sets of
items in large databases. In: Proceedings of ACM SIGMOD International Confer-
ence on Management of Data, pp. 207–216.

Alpaydin, E., 2010. Introduction to Machine Learning, 2nd ed. The MIT Press,
Cambridge, Massachusetts/London, England.

Capra, L., Emmerich, W., Mascolo, C., 2003. CARISMA: context-aware reflective
middleware system for mobile applications. IEEE Transaction on Software Engi-
neering 29 (10), 929–945.

Cheng, B.H.C., Lemos, R.D., Giese, H., Inverardi, P., Magee, J., 2009. Software engi-
neering for self-adaptive systems: a research roadmap, Software Engineering
for Self-Adaptive Systems. Lecture Notes in Computer Science 5525, 1–26,
http://www.springer.com/computer/swe/book/978-3-642-02160-2

Choco Solver, 2012. http://www.emn.fr/z-info/choco-solver/
Context Phone, 2005. http://www.cs.helsinki.fi/group/context/
Cover, T.M., Thomas, J.A., 2006. Elements of Information Theory, 2nd ed. John Wiley

and Sons, Hoboken, New Jersey.
Csallner, C., Tillmann, N., Smaragdakis, Y., 2008. DySy: dynamic symbolic execution

for invariant inference. In: Proceedings of the 30th International Conference on
Software Engineering, pp. 281–290.

Cubo, J., Sama, M., Raimondi, F., Rosenblum, D., 2009. A model to design and verify
context-aware adaptive service composition. In: Proceedings of International
Conference on Services Computing, pp. 184–191.

Dittrich, K.R., Gatziu, S., Geppert, A., 1995. The active database management system
manifesto: a rulebase of ADBMS features. Lecture Notes in Computer Science
985, 3–20.

Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D., 1999. Dynamically discover-
ing likely program invariants to support program evolution. In: Proceedings of
International Conference on Software Engineering, pp. 213–224.

Google ADC 2 Winners, 2009. http://code.google.com/android/adc/gallery winners.
html

Gu, T., Pung, H.K., Zhang, D.Q., 2004a. A middleware for building context-aware
mobile services. IEEE Vehicular Technology Conference 5, 2656–2660.

Gu, T., Pung, H.K., Zhang, D.Q., 2004b. Toward an OSGi-based infrastructure for
context-aware applications. IEEE Pervasive Computing 3 (4 (October)), 66–74.

Järvelin, K., Kekäläinen, J., 2002. Cumulated gain-based evaluation of IR techniques.
ACM Transaction on Information Systems 20 (4 (October)), 422–446.

Julien, C., Roman, G.C., 2006. EgoSpaces: facilitating rapid development of context-
aware mobile applications. IEEE Transaction Software Engineering 32 (5 (May)),
281–298.

Kremenek, T., Engler, D., 2003. Z-ranking: using statistical analysis to counter the
impact of static analysis approximations. In: Proceedings of the 10th Interna-
tional Conference on Static Analysis, pp. 295–315.

Kremenek, T., Ashcraft, K., Yang, J., Engler, D., 2004. Correlation exploitation in error
ranking. In: Proceedings of the 12th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 83–93.

Locale, 2012. http://www.twofortyfouram.com/
Lu, H., Chan, W., Tse, T., 2006. Testing context-aware middleware-centric programs:

a data flow approach and a RFID-based experimentation. In: Proceedings of the
14th ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Portland, OR, USA, November, 2006, pp. 242–252.

Lu, H., Chan, W., Tse, T., 2008. Testing pervasive software in the presence of con-
text inconsistency resolution services. In: Proceedings of the 30th International
Conference on Software Engineering, Leipzig, Germany, pp. 61–70, May 2008.

Omnidroid, 2012. http://code.google.com/p/omnidroid/
PhoneAdapter, 2012. http://www.cse.ust.hk/∼andrewust/phoneadapter.html
Rule Discussion, 2012a. http://tasker.wikidot. com/muteinmeetings
Rule Discussion, 2012b. http://tasker.dinglisch. net/tour.html
Rule Discussion, 2012c. http://tasker.wikidot.com/sleepmode
Rule Discussion, 2012d. http://groups. google.com/group/tasker/browse thread/

thread/6fa6398ec69f086c
Rule Discussion, 2012e. http://groups. google.com/group/tasker/browse thread/

thread/4ca7f88bf8bb0ae1
Sama, M., Rosenblum, D.S., Wang, Z., Elbaum, S., 2008. Model-based fault detec-

tion in context-aware adaptive applications. In: Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
pp. 261–271.

Sama, M., Elbaum, S., Raimondi, F., Rosenblum, D.S., Wang, Z., 2010a. Context-aware
adaptive applications: fault patterns and their automated identification. IEEE
Transactions on Software Engineering 36 (5 (September/October)), 644–661.

Sama, M., Rosenblum, D.S., Wang, Z., Elbaum, S., 2010b. Multi-layer faults in the
architectures of mobile, context-aware adaptive applications. The Journal of
Systems and Software 83 (2010), 906–914.

SweetDreams, 2012. https://market.android.com/details?id=com.inizz
Tasker, 2012. http://tasker.dinglisch.net
Tasker Limitations, 2012. http://tasker.dinglisch.net/bugs.html
Tse, T.H., Yau, S.S., Chan, W.K., Lu, H., Chen, T.Y., 2004. Testing context-sensitive

middleware-based software applications. In: Proceedings of the 28th Annual
International Computer Software and Applications Conference, vol. 1, pp.
458–466.

Wang, Z., Elbaum, S., Rosenblum, D.S., 2007. Automated generation of
context-aware tests. In: Proceedings of the 29th International Conference
on Software Engineering, Minneapolis, MN, USA, May, 2007, pp. 406–
415.

Weiser, M., 1999. The computer for the 21st century. SIGMOBILE Mobile Computing
Communications Review, 3–11.

Xu, C., Cheung, S.C., 2005. Inconsistency detection and resolution for context-
aware middleware support. In: Proceedings of the Joint 10th European Software
Engineering Conference and 13th ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, Lisbon, Portugal, September, 2005, pp. 336–
345.

Xu, C., Cheung, S.C., Lo, C., Leung, K.C., 2004. Cabot: on the ontology for the mid-
dleware support of context-aware pervasive applications. In: IFIP Workshop on
Building Intelligent Sensor Networks.

Xu, C., Cheung, S.C., Chan, W.K., Ye, C., 2010. Partial constraint checking for context
consistency in pervasive computing. ACM Transactions on Software Engineering
and Methodology 19 (3 (January)), 1–61, Article 9.

Xu, C., Cheung, S.C., Ma, X., Cao, C., Lu, J., 2012. ADAM: identifying defects in context-
aware adaptation. The Journal of Systems and Software 85 (12), 2812–2828
(Dec).

Yepang Liu is a Ph.D. student with the Department of Computer Science and
Engineering of the Hong Kong University of Science and Technology (HKUST).
He received his BSc degree in computer science and technology from Nanjing
University. His research interests include software engineering, software analysis,
and mobile computing.

Author's personal copy

Y. Liu et al. / The Journal of Systems and Software 86 (2013) 854– 867 867

Chang Xu is an associate professor with the State Key Laboratory for Novel Software
Technology and Department of Computer Science and Technology of Nanjing Uni-
versity, China. He received his Ph.D. degree in computer science and engineering
from the Hong Kong University of Science and Technology (HKUST). His research
interests include software engineering, software testing and analysis, and pervasive
computing.

S.C. Cheung received his BEng degree in Electrical Engineering from the Univer-
sity of Hong Kong, and his Ph.D. degree in Computing from the Imperial College

London. After graduation, he joined the Hong Kong University of Science and Tech-
nology (HKUST) where he is a full professor and the director of RFID Center. He
was an editorial board member of the IEEE Transactions on Software Engineer-
ing (TSE, 2006–9). He is the General Chair of the 22nd ACM SIGSOFT International
Symposium on the Foundations of Software Engineering (FSE 2014). His research
interests include program analysis, testing and debugging, mobile computing,
cloud computing, cyber-physical systems, end-user programming, and software
analytics.

