
Detecting and Diagnosing Energy Issues for Mobile Applications
Xueliang Li

College of Computer Science and
Software Engineering
Shenzhen University
Shenzhen, China

Yuming Yang
College of Computer Science and

Software Engineering
Shenzhen University
Shenzhen, China

Yepang Liu
Department of Computer Science

and Engineering
Southern University of Science

and Technology
Shenzhen, China

John P. Gallagher
Department of People and

Technology
Roskilde University
Roskilde, Denmark

IMDEA Software Institute
Madrid, Spain

Kaishun Wu
College of Computer Science and

Software Engineering
Shenzhen University
Shenzhen, China

ABSTRACT
Energy efficiency is an important criterion to judge the quality
of mobile apps, but one third of our randomly sampled apps suf-
fer from energy issues that can quickly drain battery power. To
understand these issues, we conducted an empirical study on 27
well-maintained apps such as Chrome and Firefox, whose issue
tracking systems are publicly accessible. Our study revealed that
the main root causes of energy issues include unnecessary work-
load and excessively frequent operations. Surprisingly, these issues
are beyond the application of present technology on energy is-
sue detection. We also found that 25.0% of energy issues can only
manifest themselves under specific contexts such as poor network
performance, but such contexts are again neglected by present
technology.

In this paper, we propose a novel testing framework for detecting
energy issues in real-world mobile apps. Our framework examines
apps with well-designed input sequences and runtime contexts. To
identify the root causes mentioned above, we employed a machine
learning algorithm to cluster the workloads and further evaluate
their necessity. For the issues concealed by the specific contexts, we
carefully set up several execution contexts to catch them. More im-
portantly, we designed leading edge technology, e.g. pre-designing
input sequences with potential energy overuse and tuning tests
on-the-fly, to achieve high efficacy in detecting energy issues. A
large-scale evaluation shows that 91.6% issues detected in our exper-
iments were previously unknown to developers. On average, these
issues double the energy costs of the apps. Our testing technique
achieves a low number of false positives.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’20, July 18–22, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8008-9/20/07. . . $15.00
https://doi.org/10.1145/3395363.3397350

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

KEYWORDS
Mobile Applications, Energy Issues, Energy Bugs, Android

ACM Reference Format:
Xueliang Li, Yuming Yang, Yepang Liu, John P. Gallagher, and Kaishun Wu.
2020. Detecting and Diagnosing Energy Issues for Mobile Applications. In
Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA ’20), July 18–22, 2020, Virtual Event, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3395363.3397350

1 INTRODUCTION
Mobile devices have evolved into a wide ecosystem, providing
millions of third-party apps to serve various user needs. Energy
efficiency is a desirable quality attribute of mobile apps. However,
many real-world mobile apps suffer from energy misuses. For ex-
ample, Huang et al. [32] reported that most energy issues in mobile
devices are caused by apps (47.9%) rather than systems (22.2%). We
also randomly sampled 89 open-source Android apps and found
that 27 (30.3%) of them suffer from serious software energy issues.

Despite many pieces of existing work (e.g., [2, 31, 32, 39]), the
root causes and manifestations of energy issues in mobile apps
are still not very well studied. Due to this reason, there exist few
effective testing techniques to uncover serious energy issues. This
motivates us to conduct an empirical study on 27 energy-inefficient
Android apps to learn the real root causes of energy issues and
their manifestation in practice. Specifically, we aim to answer two
research questions:

• RQ1 (Issue Causes): What are the common root causes of
energy issues?

• RQ2 (Issue Manifestation): How do energy issues manifest
themselves in practice?

We analyzed 171 energy issues from the 27 open-source projects.
For RQ1, we identified four main root causes of energy issues: 1)
unnecessary workload, 2) excessively frequent operations, 3) wasted

115

https://doi.org/10.1145/3395363.3397350
https://doi.org/10.1145/3395363.3397350

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Xueliang Li, Yuming Yang, Yepang Liu, John P. Gallagher, and Kaishun Wu

Table 1: Comparison with the existing technology in terms
of ability to deal with root causes and manifestations.

Root Cause Existing work [2] Thiswork
Unnecessary Workload (46.7%) ✗ ✓

Excessively Frequent Operations (17.8%) ✗ ✓

Wasted Background Processing (20.0%) ✓ ✓

No Sleep (32.2%) ✓ ✓

Manifestation Type Existing work [2] Thiswork
Simple Inputs (9.2%) ✓ ✓

Special Inputs (68.4%) ✓ ✓

Special Context (25.0%) ✗ ✓

background processing, and 3) no-sleep (Finding 1). For RQ2, we
found that many energy issues require special inputs (68.4%) or
special context (25.0%) to trigger and only 9.2% energy issues can
manifest themselves with simple inputs (Finding 2).

We further studied the state-of-the-art testing technique for en-
ergy issues [2], which was proposed by Banerjee et al., and made
two observations. First, as shown in Table 1, the existing technique
is only capable of exposing issues resulting fromwasted background
processing and no sleep. This is because the technique diagnoses en-
ergy issues based on E/U ratio, i.e., the ratio of energy-consumption
to hardware-utilization. If E/U ratio is high, it means that energy
consumption is high, while hardware utilization is low, implying
that the app under analysis is energy-inefficient. This point of view
seems reasonable. For energy issues caused by wasted background
processing and no-sleep, the E/U ratio could be remarkably high.
However, according to Finding 1, many energy issues can also be
caused by unnecessary workload and excessively frequent opera-
tions. These issues cannot be detected via analyzing E/U ratio: they
may enlarge E and U simultaneously, hence E/U ratio is not a good
indicator of the existence of such issues. Second, regarding Finding
2, the existing technique is capable of generating simple and spe-
cial inputs to trigger energy issues, but does not simulate special
contexts (e.g., poor network performance). Due to this limitation,
it may miss many real energy issues (25.0% of our studied issues
can only be triggered under special context).

Based on these observations, we propose a novel testing frame-
work for effectively detecting energy issues. It works in two critical
steps. First, our framework examines apps with a large variety
of well-designed input sequences and runtime contexts, aiming
to provoke energy issues to manifest themselves. Next, we need
to recognise the appearance of energy issues. This is challenging
due to the lack of effective test oracle. To address the challenge,
our framework deals with different issue causes respectively. For
wasted background processing, we compute statistical dissimilarity
of the power traces before and after use of the app. If the dissim-
ilarity exceeds a threshold, it reveals that the backgrounded (i.e.
after-use) app is not as moderate as supposed to be, and is probably
suffering from energy issues. We handle no-sleep in an analogue
manner. To detect unnecessary workload and excessively frequent
operations, we employ a machine learning algorithm to assess the
necessity of the app’s workloads according to several key criteria,
such as lengths of continuous-high-power periods. If the workload
is assessed unnecessary and severely energy consuming, then it will
be identified as the occurrence of an energy issue.

We also design a package of practical techniques to enhance
issue-detection efficacy of framework. For instance, before testing,
our framework scans and analyses the source code of apps to extract
the input sequences that are most likely to incur energy issues.
During testing, the framework adjusts test targets on-the-fly to
increase chances of exposing energy issues.

We performed experiments to evaluate our framework. The re-
sults show that our testing framework can uncover a large number
of serious energy issues in high-quality apps, 91.6% of which have
never been discovered before. On average, these issues double the
energy cost of the apps. Manual verification also shows that our
framework only reports a low number of false positives.

The key contributions of this paper are as followed:

• To the best of our knowledge, we conducted the largest-scale
empirical study on developer-reported energy issues in mo-
bile apps (largest previous empirical study [30]: 8 app subjects,
10 energy issues; this paper: 27 app subjects, 171 energy issues).
Our findings can greatly benefit the research on energy issue
detection and diagnosis.

• Inspired by the findings, we designed and implemented an
automated testing framework for detecting energy issues.
Our innovations include extracting battery-hungry input
sequences from source code, steering the test direction on-
the-fly for high detection efficacy, and employing machine
learning to classify app workload.

• We empirically evaluated our framework and the results are
promising: it detected 83 issues in 89 apps, creating many
opportunities for optimizing the energy efficiency of these
apps. As far as we know, this evaluation of a testing frame-
work for energy issue detection is of the largest scale (largest
previous evaluation [2]: 30 app subjects and detected 12 issues;
this paper: 89 app subjects and detected 83 issues). Our sub-
jects are also of higher quality than previous work, which
are selected considering metrics such as high popularity and
maintenance quality. In constrast, most subjects in previous
work do not meet this standard.

In the remainder of this paper, we first introduce the data source
for empirical study in Section 2, and discuss the findings in Section 3.
We present our testing framework and technical details in Sections
4 and 5. Finally, we present an evaluation of our framework and
discuss the results in Section 6.

2 DATA SOURCE
Open-source projects typically have publicly accessible issue track-
ing systems and code repositories. In the issue tracking systems,
developers can post an issue report, which contains a title and a
main body part, to report the symptoms of their observed bug/issue
1 and the steps to reproduce the issue (optional). Following that,
developers can discuss the issue and comment on the report. Those
developers who are assigned to fix the issue can propose potential
code revisions. Typically, after code review by other project mem-
bers and further changes, such revisions will be committed to the
project’s code repository.

1We may use the terms of bugs and issues interchangeably in this paper.

116

Detecting and Diagnosing Energy Issues for Mobile Applications ISSTA ’20, July 18–22, 2020, Virtual Event, USA

0

4

8

12

16
Co

m
m
.

M
M
D

SN
S

To
ol
s

Ga
m
e

Pr
od

uc
t.

Ne
w
s

Tr
av
el

Pe
rs
on

al
Ed
uc
at
io
n

Fi
na
nc
e

Br
ow

se
r

He
al
th

W
ea
ra
bl
e

Figure 1: The 89 app subjects of different categories.

0

10

20

30

40

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

Figure 2: The yearly number of reported energy issues.

Our empirical study is conducted on well-maintained Android
application projects from three popular open-source software host-
ing platforms: GitHub2, Mozilla3, and Chromium4 repositories. The
criteria for selecting app subjects for our study are these: 1) a subject
should have achieved at least 1,000 downloads on the market (pop-
ularity), 2) it should have more than one hundred code revisions
(maintainability). Following these criteria, we randomly selected
89 app subjects from those three software hosting platforms. These
open-source applications are also indexed by the F-Droid database5.
Figure 1 presents the numbers of app subjects of different cate-
gories. They cover most application categories in F-Droid and in
total contain 108,193 issue reports, indicating that these subjects
are quite large-scale.

To search for energy issues, we employed keyword searching in
issue reports’ title and body to locate potential energy issues. The
keywords we used are energy, power and battery. While keyword
searching generally helps to retrieve most energy-related issue
reports, it can also produce false positive results when the issue
reports accidentally contain any of our keywords. To filter out such
irrelevant issue reports, we manually verified each returned issue
report to make sure the issue concerned is indeed an energy issue.
In total, we checked 976 retrieved issue reports and this helped us
locate 171 real energy issue reports from 27 apps. Figure 2 shows
the distribution of opening dates of these reports. There was a peak
reporting period from 2014 to 2017. After, the number dropped
in 2018 and 2019. Only 28.1% (48 out of 171) reported issues were
fixed. The main reasons for no fixes are these: 1) many energy
issues are irreproducible (60.8%), 2) the problematic code cannot

2https://github.com
3https://dxr.mozilla.org
4https://www.chromium.org
5https://f-droid.org/

be localized (9.3%), 3) energy-saving by fixing the issues cannot
be evaluated (9.3%), and 4) the fix causes other issues (9.3%). So in
this paper, we will present a cutting-edge technology for effectively
pinpointing energy issues in the lab where testing condition is
precisely controlled, so the issues can be strictly reproduced and
localized. Also, energy-saving can be accurately evaluated.

3 EMPIRICAL STUDY
To answer our research questions, we carefully studied the 171
energy issue reports. The results are as follows.

3.1 RQ1: What Are the Common Root Causes
of Energy Issues?

Among the 171 reports, 90 explicitly show the information on root
causes of the issues. We examined all of them and observed the
following six root causes. Some issues were caused by multiple
reasons, hence, the sum of the percentages below is over 100%.

Unnecessary workload (42/90=46.7%). Many applications per-
form certain computations that do not deliver perceptible benefits
to users. These computations incur unnecessary workload on hard-
ware components including CPU, GPU, GPS, network interface, and
screen display. For example, in the reports of Chrome issue 662012
and 5416126, the application produces frames constantly even when
visually nothing is changed or repainted, which causes huge work-
load on CPU and GPU. And the report of OpenGPSTracker issue
406 shows that the app keeps recording users’ location even after
not moving for minutes, barely exhausting battery.

Excessively frequent operations (16/90=17.8%). Performing
certain operations too frequently can also waste power. In compar-
ison with unnecessary workload, when fixing energy inefficiencies
caused by excessively frequent operations, the developers do not
completely remove the operations (because their functionality is
necessary), but reduce the frequency of operations. For example,
in Firefox (issue 979121), whenever users type in the URL bar and
the text changes, the app will query the database (e.g. for auto-
completion). Considering users often visit the websites they visited
before, developers suggested to store users’ browsing history in
memory to reduce database hits to save energy.

Wasted background processing (18/90=20.0%). As battery
powered mobile devices are extremely sensitive to energy dissipa-
tion, it is good practice to make backgrounded applications as quiet
as possible. Specifically, the “backgound” here means that after the
use of an application or “activity” (a major type of application com-
ponent that represents a single screen with a user interface7), users
press the Home button or switch to another application or activity,
so the previous application or activity goes to background. Typical
examples are Chrome issue 781686 and Firefox issue 1022569: when
users select a new tab (each tab is an activity), the invisible old tab
would still keep being reloaded, which wastes battery. But these
issues do not have an easy solution since users may want old tabs
to be reloaded.

6“Chrome” is the app name, “662012” and“541612” are the issues’ ID given by the
corresponding issue tracking system.
7https://developer.android.com/guide/components/fundamentals.html

117

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Xueliang Li, Yuming Yang, Yepang Liu, John P. Gallagher, and Kaishun Wu

No-sleep (29/90=32.2%). The no-sleep issue means that when
the screen is off and device is supposed to enter sleep mode, cer-
tain apps still keep the device awake, which usually results from
misuse of asynchronous mechanisms [35] like services, broadcast
receivers, alarms and wake-locks. For example, Kontalk issue 143
unnecessarily holds a wake-lock, preventing the device from falling
asleep. For another example, in Firefox (issue 1026669), the Simple
Service Discovery Protocol (SSDP) activates the searching service
every two minutes when the screen is off, which not only incurs
a large amount of workload but also prevents the device from
entering the sleep mode. Program 1 gives the JavaScript patch
for fixing this issue. It added the cases to deal with “application-
background” and “application-foreground” for the SSDP service.
Note that, the “application-background” defined by developers in-
cludes both screen-off time and the scenarios where users switch to
another application. So this issue belongs to two categories: no-sleep
and wasted background processing.

case ''ssdp-service-found'':
- {
- this.serviceAdded(SimpleServiceDiscovery.findServiceForID(aData));
- break;
- }
+ this.serviceAdded(SimpleServiceDiscovery.findServiceForID(aData));
+ break;
case ''ssdp-service-lost'':
- {
- this.serviceLost(SimpleServiceDiscovery.findServiceForID(aData));
- break;
- }
+ this.serviceLost(SimpleServiceDiscovery.findServiceForID(aData));
+ break;
+ case ''application-background'':
+ // Turn off polling while in the background
+ this._interval = SimpleServiceDiscovery.search(0);
+ SimpleServiceDiscovery.stopSearch();
+ break;
+ case ''application-foreground'':
+ // Turn polling on when app comes back to foreground
+ SimpleServiceDiscovery.search(this._interval);
+ break;

Program 1: JavaScript patch of Firefox issue 1026669.

Spike workload (2/90=2.2%). A spike workload can cause lag-
ging UI [30], degrade user experience and heat up the device, induc-
ing a huge energy waste. For instance, in RocketChat (issue 3321),
when users send or receive GIF animation pictures, CPU utilization
quickly rises to 100% and heavily affects the battery.

Runtime exception (3/90=3.3%). In some cases, runtime ex-
ceptions may provoke abnormal behaviors of a mobile application
and cause energy waste. For instance, in AntennaPod (issue 1796),
the “NullPointerException” makes the download process persist
and consume power. In our study, such energy issues caused by
runtime exceptions are not common and we only observed three
cases.

Considering spike workload and runtime exception are of small
proportions in practice, our issue-detection technology only focuses
on the main root causes apart from them.

3.2 RQ2: How Do Energy Issues Manifest
Themselves in Practice?

Out of the 171 reports, 76 contain explicit information that shows
how the issues manifest themselves. We studied these 76 issues to

answer RQ2. We observed three manifestation types: simple inputs,
special inputs and special context. It is worthwhile to notice that,
simple inputs and special context may combine to incur issues, on
the other hand, special inputs and special context may also overlap.

Simple inputs (7/76=9.2%). Simple inputs mean one tap or
swipe gesture in common interaction scenarios. We found seven
issues are of this type of manifestation. For example, Andlytics issue
543 lets the app refresh itself whenever the user opens the app. And
VoiceAudioBookPlayer issue 299 makes the app unnecessarily scan
folders every time the user starts or leaves the app.

Special inputs (52/76=68.4%). The majority of the energy issues
can only be triggered with certain specific inputs or a sequence of
user interactions (e.g. text typing, taps, or swipes) under certain
states of an application. For instance, the c:geo (a geocaching app)
issue 4704 requires three steps to reproduce: 1) open the app and
make sure GPS is inactive since the app starts, 2) change between
cache details and other tabs of the same geocache, so GPS is acti-
vated, 3) put the device in standby and let timeout to screen-off.
After a while, users would find GPS stays active even when the
screen is turned off. To avoid energy waste, users decide to quit
using the app.

Special Context (19/76=25.0%). Special context includes envi-
ronmental conditions (rather than user interactions, e.g. taps) such
as the accessibility of networks, location of the device, settings of
the OS and applications. In our dataset, 19 issues require such spe-
cial contexts to trigger. For instance, MPDroid issue 3 appears when
the user is watching stream videos but the network is disconnected;
the app then keeps trying to load the video and consumes battery.
AnkiDroid issue 2768 occurs when users lock the phone screen
when the application is in “review” mode and a notification comes
in afterwards, so the screen will hold on until the battery is dead.

4 OVERVIEW OF TESTING FRAMEWORK
The following observations motivated us to design a novel testing
framework for effectively detecting energy issues in real apps:

• From Finding 1, we address previously unaddressed energy
issues caused by unnecessary workload and excessively fre-
quent operations.

• From Finding 2, we found that 25.0% of energy issues can
only be manifested under special context such as poor net-
work performance. However, such factors were neglected.

According to the first observation, as we discussed in Section
1, evaluating the necessity of app workload is crucial for identifying
these issues. We will use machine learning to cluster workloads,
and further assess their necessity, as shown later in Section 5.3.
According to the second observation, we will devise two types
of most common special contexts for effectively revealing these
issues, as shown in Section 5.1.2. Developers also can duplicate
our experiment for detecting these hidden issues. Importantly, we
also make practical designs and implementations to enhance the
efficacy of our testing framework.

Figure 3 shows the framework overview. The framework first
makes sophisticated preparation before testing. For example, it in-
spects the source code and collects the candidate input-sequences
that are most suspected of energy overuse. A set of candidate run-
time contexts (containing the above mentioned two types of special

118

Detecting and Diagnosing Energy Issues for Mobile Applications ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Start a test case, clear all unrelated threads and data,
launch the app from root screen

Identify energy issues from power trace

Run app with the Input Sequence and Runtime Context
on device, and meanwhile measure power consumption

Energy
issue

exists?

Add the issue to database and update steering
parameters to guide the test direction

Yes

Time
expires?

End testing and generate test reports

Yes

Preparation before testing

Select Input Sequence and Runtime Context

No

No

Figure 3: The flow chart for our testing framework.

contexts) are also carefully designed to increase the chance of pro-
voking energy issues. Later, these candidate inputs and contexts
will be explored under an effective and systematic scheme.

To start a test case, the framework at first clears unrelated threads
and data to minimize the interference from other applications and
previous test cases. Then, it will select one input sequence and one
runtime context from the candidates, then run the app with them.
During the entire test, the power consumption of device is traced
with a power monitor. Our framework will look into the power
trace and decide whether an energy issue exists. If one does exist,
the issue information will be added into database. The entire test
is limited with a time budget. If the time budget runs out, the test
will quit and test reports will be generated for developers to help
fix the issues. Otherwise, our framework will start a new test case.

As mentioned above, our framework explores the inputs and
contexts under a systematic scheme, where the exploring direction
is tuned on-the-fly. The rationale of our scheme is that if an energy
issue occurs, it implies that the type of the input sequence and
runtime context incurring this issue may be more likely to uncover
energy issues than average case, since it did cause an energy issue
to show up; we thus increase the chance of this type of inputs and
context to be tested. Concretely, we utilize a set of parameters and
iteratively update them to guide the test direction, as shown later
in Section 5.2.

The large-scale evaluation (Section 6) shows that, exploiting
these practical and targeted tests, our framework largely outper-
forms the state of the art on the efficacy in detecting all kinds of
energy issues.

5 DETAILED TECHNOLOGY
This section introduces detailed implementations of our testing
framework. It involves how to design candidate input sequences
and runtime contexts, how to steer the test direction at runtime,
and how to identify energy issues from the power traces, etc. The
overall objective is to effectively and accurately pinpoint energy
issues.

5.1 Preparation before Testing
As shown in Section 4, our test case is driven by the input sequence
and runtime context. Our candidate input sequences are designed
for high utilization of the main hardware components, such as CPU,
screen display and network interface, since they are usually the
culprits of energy waste, as shown in the literature [46]. Meanwhile,
according to Finding 2, we will carefully devise a set of artificial
runtime contexts for effectively detecting those energy issues.

5.1.1 Design of Candidate Input Sequences. We design two types of
candidate input sequences. One isweighted input sequences, the
other is random input sequences. The former helps our frame-
work detect issues in a guided manner, the latter will cover some
corner cases that are hard to predict.

Weighted input sequences are generated referring to the Event-
Flow Graph (EFG) [36]. Each node in an EFG is a User Interface (UI)
component, such as a button or a list item. If a user interaction on
a UI component, say node1, can immediately bring out another UI
component, say node2, then the EFG has a directed edge from node1
to node2. Technically, we utilize Layout Inspector8 to construct
the EFG of an app. An arbitrary path in EFG could be a candidate
input sequence for our testing framework. In practice, our test cases
always start from the root node (i.e. the initial UI component of the
app). The lengths of paths are constrained with a limit. Note that,
even though Layout Inspector can construct the EFG, it does not
have a capacity to run apps with the paths. So in our test, we use
Dynodroid9 to feed the paths to apps.

Importantly, all input sequences generated from EFG are as-
signed a weight. The weight indicates potential of a sequence to
cause energy waste; an input sequence with a larger weight has a
higher priority to be tested. We use Equation (1) to calculate the
weight for each input sequence. S is the number of a certain set
of system APIs invoked by the input sequence. C is the number of
function invocations and block transitions incurred by the input
sequence. α and β are used for adjusting influences of S and C on
the weight; α > 0, β > 0,α + β = 1. In practice, we set α at 0.6 and
β at 0.4.

weiдht = α ∗ S + β ∗C (1)
The reason why we resort to S and C to indicate the potential of
excessive energy use is this: as shown in [46], the main energy-
consuming components are CPU, screen display, network interface
(cellular and WiFi), as well as GPS and various sensors. Except
for CPU, all other components can only be controlled by a set of
system APIs, as listed in [2]. The more this set of system APIs an
input sequence accesses, the larger are the chances it causes energy
waste. The CPU executes basic operations that constitute the source

8https://developer.android.com/studio/debug/layout-inspector
9https://dynodroid.github.io

119

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Xueliang Li, Yuming Yang, Yepang Liu, John P. Gallagher, and Kaishun Wu

code of apps, for example, arithmetic operations like additions
and multiplications, and control-flow operations mainly including
function invocations and block transitions. Recent research [22,
26] has shown that control-flow operations are the actual main
energy-consumers for Android app source code. We therefore use
the total number of the main control-flow operations (i.e. function
invocations and block transitions) to indicate the potential CPU
overload of an input sequence.

Note again that, we calculate S and C before testing. We first
instrument the app source code, and run the app with the input
sequences in the emulator on a powerful PC, and then record their
S and C values individually.

Apart from weighted input sequences, we also designed ran-
dom input sequences to cover exceptional cases we might not
envisage. We use the Monkey tool10 to generate random input
sequences, such as taps and swipes. “Random” here means the po-
sition of the inputs on screen are randomly set. Monkey does not
generate input sequences at runtime. Instead, Monkey pre-defined
a large number of random input sequences. When being asked for
an input sequence, Monkey will arbitrarily deliver one of them with
its ID. The advantage of this design is that testers can conveniently
use the same ID to repeat the input sequence and reproduce the
test case. In our test, the pre-defined input sequences in Monkey
are all adopted as our candidate input sequences.

In summary, our test combines two types of input sequences,
namely, weighted and random. In Section 5.2, we will show the
strategy for balancing the testing time on them.

5.1.2 Design of Candidate Runtime Contexts. The entire experi-
ment is set in a signal shielding room, enabling us to manipulate
the contextual factors, such as the strength of WiFi (in our test, we
employ WiFi as the connection to Internet) and GPS signal. We
designed three types of runtime contexts, namely, Normal, Network
Fail and Flight Mode. In Normal, the WiFi and GPS work nor-
mally (package delivery delay is 36 ms and bandwidth is 3.2 Mb/s).
In Network Fail, the signal is seriously weak (package or message
delivery delay lengthens to 451 ms, bandwidth drops to 12.0 Kb/s).
In Flight Mode, WiFi is closed at software level by the OS, and
GPS works normally.

The reason for choosing Network Fail and Flight Mode as
representatives for special contexts is that our empirical study
shows they are the two major types of special contexts. The former
accounts for 26.3% (5 out of 19), the latter for 15.8% (3 out of 19) of
issues manifested under special context.

We also designed a special type of runtime context, Non-background.
We designed this context because in our experiment we observed
that it can provoke more no-sleep issues, as shown later in Sec-
tion 6.3. In Non-background, the network and GPS work ordinarily,
however, we do not input a press of Home button to the device
after EXECUTION stage (the stage-division for test cases will soon
be explained in Section 5.3). That is, the test case does not have
BACKGROUND stage, and straight goes to SCREEN-OFF.

10https://developer.android.com/studio/test/monkey.html.

5.2 Steer the Test Direction On-the-fly
Our framework steers test direction dynamically based on test
history. Algorithm 1 shows details of our steering scheme. The ra-
tionale behind it is this: when an energy issue is detected, it implies
that this type of input sequence and runtime context may have a
greater opportunity than usual to provoke energy issues since it
did trigger an energy issue. Hence, our framework will generate
slightly more of this type of test cases for larger chance of con-
fronting energy issues.

Algorithm 1: Steer the test direction on-the-fly
Data:
WeiдhtedInputSequences = {(sequencei , weiдhti)};
RandomInputSequences = {sequencej };
RuntimeContexts[N] = {contextk };
0 < pwдt < 1, Pctx [N] = {0 < pk < 1};
∆wдt , ∆cxt ;

1 Preparation before testing;
2 Start a test case, clear unrelated threads and data, launch app from root screen;
3 #---------Select Input Sequence and Runtime Context----------#

4 Determine the type of input sequence, and the type of “weighted” has a
probability of pwдt to be chosen;

5 if the determined type is “weighted” then
6 Select an unexplored sequence with highestweiдht in

WeiдhtedInputSequences ;
7 else
8 Randomly select one sequence from RandomInputSequences ;
9 end

10 Select one context from RuntimeContexts with its corresponding
probability;

11 #--#

12 Run app with the selected input sequence and runtime context on device, and
meanwhile measure power consumption;

13 Identify energy issues from power trace;
14 if there exists an energy issue then
15 Add the energy issue to database;
16 #-----------------Update steering parameters---------------#

17 if the issue is incurred by a “weighted” sequence then
18 if pwдt ≤ wдt_up_threshold − ∆wдt then

pwдt := pwдt + ∆wдt ;
19 else
20 if pwдt ≥ wдt_down_threshold + ∆wдt then

pwдt := pwдt − ∆wдt ;
21 end
22 switch which context triggers the energy issue do
23 case e.g. contextk do
24 if pk ≤ cxt_up_threshold − ∆cxt and there are n elements

(except pk) in Pctx that are greater than or equal to
cxt_down_threshold + ∆cxt and n > 0 then

25 pk := pk + ∆cxt ;
26 Decrease those n elements individually by ∆cxt /n;
27 end
28 end
29 end
30 #--#

31 end
32 if time expires then End Testing and generate test reports;
33 Go back to line 2

Data for the algorithm. The candidate input sequences and
runtime contexts are designed based on the approach we demon-
strated in Section 5.1.1 and 5.1.2. We present them in the data struc-
tures ofWeiдhtedInputSequences , Random InputSequences and
Runtime Contexts . N is the number of candidate runtime contexts.
In our test, we devised 4 runtime contexts (including Non-background),
so N = 4. pwдt and Pctx are the steering parameters for concretely

120

Detecting and Diagnosing Energy Issues for Mobile Applications ISSTA ’20, July 18–22, 2020, Virtual Event, USA

guiding the test. pwдt is the probability of choosing a weighted
input sequence for the upcoming test case. In practice, we initialize
it as 50%, so the first test case has a chance of 50% to run with
a weighted input sequence, and we will update and refine pwдt
dynamically during the entire testing. On the other hand, one ele-
ment pk in Pctx represents the probability of choosing contextk in
RuntimeContexts . We will also update Pctx at runtime.The sum-
mation of elements in Pctx is bound to 1.

∆wдt is the increment used to increase or decreasepwдt to renew
pwдt . ∆cxt plays the same role for Pctx . The larger ∆wдt and ∆ctx
are, the more aggressively we tune the test direction.

Details of the algorithm. We first prepare data and initialize
parameters (pwдt , Pctx , ∆wдt and ∆cxt). We then start a test case,
clear unrelated threads and data, and launch the app from root
screen. Next, we decide the type of input sequence; weighted input
sequences have a probability of pwдt to be chosen. If the chosen
type is “weighted”, we then select an unexplored sequence with the
highestweiдht inWeiдhtedInputSequences . Otherwise, we ran-
domly select a sequence from RandomInputSequences . Likewise,
for runtime context, we select one from RuntimeContexts with its
corresponding probability.

We then feed the app with the selected input sequence and run-
time context, and measure the device power. The power trace will
be analysed to confirm whether an energy issue occurs. If there
exists an energy issue, it implies that this type of input sequence
and runtime context may be profitable for provoking more energy
issues, our testing framework then steers lightly in this direction.
Specifically, if it is triggered with a weighted input sequence, we
increase pwдt by ∆wдt . And after being increased, pwдt should not
exceedwдt_up _threshold . If it is a random input sequence, we de-
crease pwдt by ∆wдt . Also, we keep pwдt ≥ wдt_down _threshold .

An analogous approach is applied to refining Pctx . We check
under which runtime context (e.g. contextk) the issue occurs, then
increase its testing probability (e.g. pk). However, the precondi-
tion is that there should be at least one element (except pk it-
self) in Pctx that are no less than cxt_down _threshold + ∆cxt ,
because on one hand, we intend to rebalance the probabilities, and
on the other, we should let all contexts have at least a possibility of
cxt_down_threshold to be tested.

5.3 Identify Energy Issues from Power Trace
We divide the power trace into five stages, i.e. PRE-OFF, IDLE,
EXECUTION, BACKGROUND and SCREEN-OFF. This division can help
us identify three types of energy issues: execution issues (including
issues caused by unnecessary workload and excessively frequent
operations), background issues (i.e. wasted background processing)
and no-sleep issues. Figure 4 shows an illustration of power traces
with these three types of energy issues.

PRE-OFF stage is the beginning stagewhere the device is powered
but the screen is off. Then, the test case will be transferred to
IDLE stage by turning on the screen. To enter EXECUTION stage, the
subject application will be opened and run with a certain input
sequence and runtime context, which are selected as shown in
Section 5.2. After EXECUTION stage, the application will be fed with
a press of Home button to enter BACKGROUND stage. The final stage
is SCREEN-OFF stage, which begins when screen is supposed to be

PRE-OFF IDLE SCREEN-OFFEXECUTION BACKGROUND

Turn on the
screen

Open the
application

Press
Home button

PO
W

ER
 T

R
A

C
E

 Screen automatically
turned off

TIME

Without Energy Issue

With Execution Issue

With Background Issue

With No-Sleep Issue

Figure 4: An illustration of power traces with energy issues.

turned off automatically, however, part of energy issues keep the
screen on even at SCREEN-OFF stage, eating battery power badly.

5.3.1 Identifying Execution Issues. For execution issues, as we dis-
cussed in Section 1, evaluating the necessity of app workload is
crucial for identifying them. Specifically, we employ the Dbscan
clustering algorithm [8] (Density based spatial clustering of appli-
cations with noise) to fulfil this purpose. The objective of Dbscan is
to classify multidimensional data points into three groups, namely,
core points, border points and outlier points. After clustering, the
data points should have the following properties: 1) For a core point,
the number of its neighbours (the points within a range of ε from
it) is no less than a certain value,MinPts . Generally speaking, the
core points are “quite close and gathered”. 2) For a border point, its
neighbours are less than MinPts , but it is a neighbour of at least
one core point or another border point. 3) For an outlier point, its
neighbours are less thanMinPts , and it does not have either a core
or a border neighbour.

We treat each test case as a data point, and treat test cases in
the same app category as a data set for clustering. The dimensions
of each data point we employed for clustering are lchpp , nchpp ,
µchpp , µexe , which are all extracted from power trace of EXECUTION
stage of each test case. lchpp is the total length of continuous-
high-power periods. Continuous-high-power period is when power
continuously exceeds a certain threshold longer than a certain
length. nchpp is number of these periods. µchpp is average power of
these periods. µexe is average power of the entire EXECUTION stage.
Dbscan then classifies the test cases into those three groups. We
label test cases in core and border groups as “normal”, and the ones
in outlier group as suspects for suffering from execution issues.

The motivation of this approach to probing for execution issues
is this: usually “normal” energy use is sufficient to guarantee qual-
ity of user experience (QoE) of apps, outlier-level energy use is
suspiciously problematic and unnecessary. And different app cat-
egories usually have distinct “normal” energy use (e.g. games vs.
productivity apps). So we handle different app categories separately
as shown above.

121

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Xueliang Li, Yuming Yang, Yepang Liu, John P. Gallagher, and Kaishun Wu

Table 2: Technique package. The bold items are our
originally-designed techniques, the italic are inspired by [2].

Preparation before testing Steer test direction
• Candidate input sequences
◦Weighted input sequences • Balance weighted and
- System APIs (I/O components) random input sequences
- Control-flow operations (CPU) • Balance different runtime

◦ Random input sequences contexts
• Candidate runtime contexts • Improve efficacy of
◦ Normal ◦ Non-background issue-detection
◦ Flight Mode ◦ Network fail

Identify energy issues from power trace
• Identify execution issues • Identify background
◦ Select dimensions and no-sleep issues
◦ Cluster ◦ Label outliers ◦ Dissimilarity analysis

Note that, the ultimate clusteringmodel is available onlywhen all
test traces are collected. So at the beginning of testing, such a model
is inaccessible since we have no power traces to build it. So, we need
to decide, from which point during testing, we should start building
a model using the collected data. To make our design reasonable,
we did a pilot study by running 100 randomly-chosen test cases.
We extracted the key features from the power traces and visualized
the features. We found two “obvious” outliers using Dbscan. With
further manual verification, both outliers were confirmed to be real
issues.

As a density-based clustering algorithm, Dbscan may generate
biased-models when outliers are of significant proportion in the
dataset. In our problem domain, the number of outliers (abnormally
high energy use) is naturally low, as shown in our pilot study and in
our final evaluation (Section 6). Hence, in our experiment, we at first
collected 50 power traces to bootstrap the model building process
and then iteratively added new power traces to the dataset. As the
dataset grows, the model becomes more accurate and powerful for
identifying outliers. At last, we used the final model to recheck all
power traces for issue detection.

Later, our evaluation on 89 apps (involving 35600 test cases)
shows that only 1.1% test cases are outliers. Our framework detected
47 candidate execution issues from those 1.1% test cases. Only three
(out of the 47) are false positives, indicating the high reliability
of this approach. In contrast, current technology [2] detected 3
candidate execution issues from 30 apps, and still one of them is a
false positive.
5.3.2 Identifying Background and No-Sleep Issues. If the app is free
from background issues, the power trace in BACKGROUND stage is
supposed to be similar to that in IDLE stage. We thus compute
the dissimilarity value of the two traces. If the value is above a
certain threshold (40% in our experiment), we label this test case as
a candidate for a background issue.

We identify the no-sleep issues in the same way. We compare
PRE-OFF with SCREEN-OFF. If the dissimilarity outstrips a certain
threshold (50% in our experiment), we speculate this test case is
suffering from a candidate no-sleep issue.

5.4 Manual Verification
After the candidate issues are found, we manually verify whether
they are actual energy issues. We adopt three criteria for distin-
guishing a real issue from a false positive. First, the energy cost

is not from the OS. Second, the energy cost is larger than normal
cases by at least 10%. Third, user experience can be improved after
removing the workloads. For the third criterion, which may be sub-
jective, we clarify it using an example: an app is downloading large
files for functional purposes, such as maps in games, which causes
abnormally high energy cost. In this case, there is no easy solutions
to save battery power since users may accept the expensive down-
loading process (removing it will affect app functionality). We then
identify it as a false positive. However, for cases such as the issue
in Leisure (as shown later in Table 3), where GIF animations are
played when they are invisible, we identify it as a real issue since
animations in such cases do not generate user-observable benefits.
One can optimize the apps by removing such expensive computa-
tion. However, we agree that evaluating necessity of workload is an
obvious challenge. There is no very effective and general solution
yet.

5.5 Comparison with the Most Relevant Work
Table 2 lists the differences between our technology and the most
relevant work [2]: 1) For preparation before testing, since their
work [2] only takes I/O components into account, their technology
is impracticable for the important CPU-bound apps (e.g. games) and
CPU-related energy issues. They also neglected the special runtime
contexts which can trigger 25.0% of energy issues. 2) W.r.t steering
test direction, their work does not have this feature because they
only consider two dimensions of testing space, i.e. I/O-related input
sequences and Normal context, whereas our framework addition-
ally tests five more dimensions including CPU-related and random
input sequences, and three more runtime contexts. So our searching
space for energy issues is exponentially enlarged; we thus designed
practical online steering strategy to balance different kinds of in-
puts and contexts, and improve the issue-detection efficacy. 3) For
identifying energy issues from power trace, as we mentioned in
Section 1, E/U theory [2] can hardly address execution issues (64.5%
of all energy issues), by comparison, our framework employs ad-
vanced machine learning algorithm to analyse the energy use of
apps and filter out these issues.

Benefiting from these targeting designs, our framework largely
outperforms the state-of-art, as shown in Section 6.

6 EXPERIMENTAL EVALUATION
In this section, we first introduce our experimental setup. Then
we evaluate our testing framework on various aspects, such as its
efficacy in detecting energy issues, its comparison with the state-
of-the-art, etc. The result shows that our testing framework largely
outperforms current technology, showing the benefits both of our
sound empirical study and our dynamic targeting techniques.

6.1 Experimental Setup
We employ the Odroid-XU4 development board11, whose processor
has four big cores with a frequency of 2 GHz and four small cores
with a frequency of 1.3 GHz. The board possesses a powerful 3D
accelerator, Mali-T628 MP6 GPU. The high capacity of Odroid-XU4

11https://wiki.odroid.com/odroid-xu4/odroid-xu4

122

Detecting and Diagnosing Energy Issues for Mobile Applications ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Table 3: Examples of detected energy issues.
Hit Context or Energy Reported

Application Category Issue Type Activity or Symptom
Rate1 Non-background Waste before?

Leisure News Execution 3 GIFs playing on one page 1.0% Normal 25.9% No
GPS Status Travel Execution Not obvious 47.0% Normal 15.3% No
BatteryDog Tools Execution Editing lengthy text 1.0% Normal 30.8% No
Rocket Chat Comm. Execution Connect to server 1.0% Normal 12.8% No
Chess Clock Tools Background Device heated up 100.0% WiFi Fail 59.2% No

Vanilla Multimedia No Sleep Enqueue many tracks 59.0% WiFi Fail 242.8% No
cgeo Travel No Sleep App get stuck 2.0% Flight Mode 179.4% Yes

AntennaPod Multimedia No Sleep Keep popping up messages 1.0% Non-background 184.4% Yes
1. Hit rate here is the percentage of test cases detected having the energy issue in that app.

0%
50

%
10

0%
15

0%
20

0%
25

0%

En
er

gy
 w

as
te

Execution Issues No-Sleep IssuesBackground
Issues

663.3%

mean = 25.0%

mean = 88.9% mean = 200.0%

Figure 5: The energy waste of detected issues of different types

board guarantees its performance for most applications on the mar-
ket. It is also equipped with a power monitor, Smartpower212, to
measure the real-time power consumption. The sampling rate is
100 Hz. To assess its measurement variability, we randomly chose
20 test cases and ran each for 10 times. We thus collected 10 records
of average power consumption for each test case. We employ co-
efficient of variation (Cv) to indicate the variability. Specifically,
Cv =

σ
µ , where σ and µ are the standard deviation and mean of

the 10 records for each test case. At last, the mean of the 20 Cv s is
about 0.8%, meaning a low measurement variability. Due to these
rich and solid features, the Odroid board is widely employed in the
field of energy optimization for mobile devices [41, 52, 57].

We use Android 4.4 KitKat as our target OS. Android is open-
sourced and it captures around 74.13%13 of the worldwide mobile
OS market by Dec 2019. We evaluate our framework on the 89 app
subjects. 27 of them have issue reports, 62 do no, as we introduced
in Section 2. The considerations of employing these 89 apps for
the evaluation are these: 1) Our framework is inspired by issue
reports from the 27 apps, so it may be inapplicable to new apps,
we thus employ the 62 subjects without issue reports as new apps
to evaluate the generality of our framework. 2) Referring to the
issue reports, we also can check whether our framework is capable
of detecting unreported issues. 3) These apps are popular, well-
maintained and of much higher quality than the apps adopted by
previous research.

Our total testing time for the 89 app subjects is 2373.3 hours, i.e.
98.9 days, which were evenly spent on each app. (i.e. 1.11 days for

12https://www.odroid.co.uk/odroid-smart-power-2
13http://gs.statcounter.com/os-market-share/mobile/worldwide

one app). Note that, the time of preparing weighted input sequences
is also included, which takes 18.8% of the entire testing time.

6.2 The Efficacy of Our Testing Framework
The experimental result shows that our test detected 91 candidate
energy issues, among which we manually confirmed 83 real en-
ergy issues. 22.9% (19 out of 83) of these issues are from the 27 old
apps, 77.1% (64 out of 83) are from the 62 new apps. After manual
verification, we found 8 false positives. Table 3 shows 8 examples
of the detected energy issues. For instance, in Leisure, three an-
imated GIFs are loaded and are played at the bottom of a certain
page even though they are invisible to users most of the time. This
execution issue wastes 25.9% energy use. It can be fixed by freezing
the animation when the GIF pictures are not shown on the screen.
For another example, when Chess Clock is not in use and back-
grounded, the device will heat up from 41.2◦C to 60.9◦C due to the
inefficient and long utilization of CPU. The average power of this
issue is 59.2% higher than that of the IDLE stage.

Figure 5 shows the energy waste of detected energy issues. En-
ergy waste is calculated using Equation (2).

w = (
ex
en

− 1) × 100% (2)

w is the energy waste of the issue, ex is average power of the
corresponding stage in the test case with the corresponding is-
sue (EXECUTION stage for execution issues, BACKGROUND stage for
background issues, SCREEN-OFF stage for no-sleep issues). en is
“normal” energy cost. We define “normal” energy cost individu-
ally for different issues. For background and no-sleep issues, we
adopt average power at IDLE and PRE-OFF stage as normal cost,
respectively. For execution issues, we use mean value of average

123

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Xueliang Li, Yuming Yang, Yepang Liu, John P. Gallagher, and Kaishun Wu

6.7%

33.3%

49.4%
43.8%

Execution
issues

BG & NS
issues

Ef
fic

ac
y r

at
io

Present
Ours

Figure 6: Comparison on issue-detection efficacy (rds) with
the present technology.

powers of EXECUTION stage in test cases in the same app category,
as normal cost.

The experimental result shows that the energy waste of execu-
tion issues is 25.0% on average and up to 137.6%; the energy waste
of background issues is 88.9% on average and at maximum 196.2%;
the values for no-sleep issues are 200.0% and 663.3%, respectively.
Overall, the average energy waste of all the issues is 101.7%.

91.6% (76 out of 83) detected energy issues in our test are newly-
reported, which on average double energy consumption of the
apps. Without our tests, these serious energy issues might have
never been detected even though they cause serious battery drain.

On the other hand, 95.9% (164 out of 171) energy issues in our
empirical study are not listed in the issues detected by our test.
The major reasons are as follows: Firstly, our standard of deter-
mining energy issues is much higher than that of developers. The
issues detected in our test have outlier-level impacts on energy
use; the energy wastage is usually above 10.0%. However, many
issues detected by developers only cause small transient workloads,
energy overuse can hardly reach 10.0%. For instance, Firefox issue
1057247 lets app re-fetch the failed favicon every 20 min, which is
believed costly. So developers reduce the re-fetching frequency to
conserve energy. For another example, VoiceAudioBookPlayer issue
299 makes the app scan material files everytime the user starts and
leaves app. Developers then designed a smarter scanner to lessen
the number of scans. However, these issues can not be noticed
by our framework because they have very marginal influence on
the metrics (i.e. lchpp , nchpp , µchpp and µexe) we chose to identify
execution issues. Secondly, a number (35.4%, 58 out of 164) of the
issues are not reproducible, so our test cannot trigger them either.
Thirdly, the variety of input sequences and runtime contexts in our
test is not large enough to cover all of them due to the time limit.

The first and third reasons also shed light on false negatives of
our test. The first reason implies that the issues that draw develop-
ers’ attention but consume non-significant power (compared with
our detected issues) can be missed by our test. It is because only
outlier-level energy cost is deemed as an energy issue in our test.
Loosening this strict criterion can help significantly reduce false
negatives but may lead to false positives. The dilemma is caused by
the difficulty of objectively and automatically judging the necessity
of workloads. There is no general solution for this problem yet.
Nevertheless, our framework can be flexibly configured to detect
more energy issues if users are willing to tolerate some false pos-
itives. W.r.t. the third reason, since we were testing 89 apps, one

0%
10%
20%
30%
40%
50%
60%

Em
p.

Ex
p.

Em
p.

Ex
p.

Em
p.

Ex
p.

Em
p.

Ex
p.

Em
p.

Ex
p.

Em
p.

Ex
p.

UW EFO BG NS SW RE

Pe
rc

en
ta

ge

New Apps
Old Apps

UW EFO BG NS SW RE

Figure 7: Issue causes in empirical study and experiment.

0
5

10
15
20
25
30

No
rm Fa

il

Fli
gh

t

No
n-

bg

No
rm Fa

il

Fli
gh

t

No
n-

bg

No
rm Fa

il

Fli
gh

t

No
n-

bg

Execution Issues Background Issues No-Sleep Issues

Nu
m

be
r Old Apps New Apps

Execution Issues Background Issues No-sleep Issues

Figure 8: Energy issuesmanifested under different contexts.

day’s test for one app results in three months’ test for all apps.
Developers can test their own app more comprehensively to realize
larger coverage.

We now compare the efficacy of our testing framework with
current technology [2]. We use the efficacy ratio (rds), i.e. the ratio
of the number of detected issues to the number of subject apps,
to indicate the efficacy of a framework. As shown in Figure 6, for
execution issues, their rds is 6.7% (2 issues out of 30 apps), ours is rds
is 49.4% (44 out of 89); for background (BG) and no-sleep (NS) issues
together, their rds is 33.3% (10 out of 30), while ours is 43.8% (39 out
of 89). We combine background and no-sleep issues since their work
did not distinguish them. The result confirms that our framework
can detect a much larger number of more serious energy issues in
higher-quality apps in comparison with the state-of-the-art. This is
due to the fact that our work is based on the insightful empirical
findings, rather than ungrounded assumptions.

6.3 Issue Cause and Manifestation
Figure 7 demonstrates breakdown of energy issues of different
causes in empirical study and experiment. “Emp.” is experiment,
“Exp.” is empirical study. Our experiment is conducted on both new
and old apps, we thus plot them with different colours and patterns.
“UW” is unnecessary workload, “EFO” is excessively frequent opera-
tions, “BG” is wasted background processing, “NS” is no-sleep, “SW”
is spike workload, “RE” is runtime exception. As shown in Section
6.2, the issues detected in experiment are much more costly than
those in empirical study. So this result indicates that, no matter for
“big” or “small” issues, UW and EFO are always the very significant
root causes, which justifies our Finding 1. And these issues are
exactly the issues that current technology can hardly address.

124

Detecting and Diagnosing Energy Issues for Mobile Applications ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Figure 8 demonstrates the number of energy issues triggered
under different contexts in our experiment, which captures more
detailed manifestation characteristics of energy issues. “Norm” is
Normal, “Fail” is Network Fail, “Flight” is Flight Mode, “Non-
bg” is Non-background. We can see that most execution issues are
manifested in the Normal context because many scenarios where
issues occur require normal network and GPS context. For example,
as we discussed above, the issue in Leisure showed up only when
those three GIF pictures were downloaded and showing on the
page. We only have six (6/83 = 7.2%) background issues, which
indicates that OS is competent in clearing potential bad influence of
backgrounded apps at BACKGROUND stage. However, backgrounded
apps may still suffer from no-sleep issues: Normal, Network Fail
and Flight Mode provoke 6, 17, 13 no-sleep issues respectively.
Furthermore, even though Non-background and Normal run in the
same context, the former tends to provoke more no-sleep issues. In
our test, it induces 17 issues. This result implies that special contexts
(and Non-background) tend to incur anomalous behaviours of apps,
such as bad use of wake-lock, and thus cause more no-sleep issues.

Figure 8 also shows that 37.3% (31 out of 83) energy issues can
only be triggered under Network Fail and Flight Mode. This
confirms Finding 2: special contexts, such as network fail, hide a
significant number of serious energy issues.

7 RELATEDWORK
Our work is related to multiple lines of research work. We will
discuss three aspects: understanding energy issues; detecting and di-
agnosing energy issues; fixing energy issues and optimizing software.

Understanding Energy Issues. The style of empirical study that
mines the data in repositories has been widely applied. For example,
to characterize performance issues, a large body of research has
been done for PC and server side software [17, 37, 55]. The first
empirical study on characteristics of energy issues in the system
of mobile device was done by Pathak et al. [39]. They mined over
39,000 posts from four online mobile user forums and mobile OS
bug repositories, and studied the categorization and manifestation
of energy issues. Xiao et al. [32] conducted a similar survey on
three Android forums. The above studies involve issues in multiple
layers across the system stack of mobile devices, from hardware,
OS to applications. And the issue reports adopted in above studies
were mostly proposed by end-users and random developers, who
can hardly contribute very insightful understanding of the issues
(e.g. root causes). The most related study is conducted by Liu et al.
[30], investigating performance issues (including energy issues, as
how they treated) reported in issue-tracking systems maintained
by developers who developed the apps. However, the number of
the studied energy issues is very small compared with our study. In
summary, our study is targeted at app-level energy issues, and our
employed issue reports are documented by professional developers
of the corresponding high-quality projects. Our findings are more
insightful and comprehensive.

Detecting and Diagnosing Energy Issues. Non-energy issues (e.g.
security [43], compatibility [24] and performance [38] issues) can
be detected plainly by analysing program artefacts. In contrast,
to detect energy issues, researchers have to first learn the energy

characteristics of mobile devices and apps. Hence, researchers use
OS, hardware and even battery features as predictors to infer energy
information at device, component, virtual machine or application
level [5, 18, 19, 21, 40, 44, 51, 54]. Shuai et al. [11] and Ding et al. [23]
proposed approaches to obtaining energy information at source line
level. The former requires the specific energy profile of the target
systems. The latter utilizes advanced measurement techniques to
obtain source line energy cost.

Two pieces of work [15, 16] from Jabbarvand et al. are close to
our work. Our work differs from theirs in three main aspects. First,
their works mainly address the challenges of issue manifestation
(how to trigger the issues), while our work addresses the challenges
of both issue manifestation and detection (how to identify the real
existence of the triggered issues). Second, they assume that the
over-use of certain APIs is the main source of energy issues, which
is also assumed by [2]. However, APIs cannot cover all usage of
CPU, which is a main energy consumer [10] on smartphones. In
contrast, our work analyzes the CPU usage by tracing control-flow
operations at code level. Third, their evaluations show the efficacy
of their techniques for triggering previously-reported energy issues,
but the efficacy for triggering previously-unknown issues is not
justified due to the lack of issue-detection mechanisms.

The work of Banerjee et al. [2] is the most relevant to ours. Two
key differences prevent it from uncovering most serious energy
issues detected in our test. The first is that we have deeper under-
standing of energy issues, which helped us address the execution
issues and special contexts that they can not handle. The second
is technical difference, as we elaborated in Section 5.5: we took
CPU overuse into account when pre-designing input sequences, we
developed online test-steering strategy to explore the vast search-
ing space, we employed advanced machine learning algorithm to
identify execution issues from power trace, etc. In summary, owing
to our careful empirical study and well-designed testing technology,
our framework surpasses the state-of-the-art in detecting all kinds
of energy issues.

Fixing Energy Issues and Optimizing Software. A large amount
of research effort on energy-saving for mobile devices has been
focused on the main hardware components, such as the CPU, dis-
play and network interface. The CPU-related techniques involve
dynamic voltage and frequency scaling [7], heterogeneous archi-
tecture [9, 25, 27] and computation offloading [20, 48]. Techniques
targeting the display include dynamic frame rate tuning [13], dy-
namic resolution tuning [12] and tone-mapping based back-light
scaling [1, 14]. Network-related techniques try to exploit idle and
deep sleep opportunities [28, 47], shape the traffic patterns [6, 42],
trade-off energy against other design-criteria [4, 45, 53], etc. Such
work attempts to reduce energy dissipation by optimizing the hard-
ware usage; there are also several pieces of work aiming at designing
new hardware and devices [49, 50, 56]. Besides, another line of re-
search work is dedicated to solving background and no-sleep issues
[5, 29, 35].

Two pieces of work [3, 34] provide systematic approaches to
optimizing software source code for energy-efficiency. In the former,
Boddy et al. attempted to decrease the energy consumption of
software by handling code as if it were genetic material so as to
evolve to be more energy-efficient. In the latter, Irene et al. proposed

125

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Xueliang Li, Yuming Yang, Yepang Liu, John P. Gallagher, and Kaishun Wu

a framework to optimize Java applications by iteratively searching
for more energy-saving implementations in the design space.

8 CONCLUSION
In this paper, we conducted an empirical study on software energy
issues in 27 well-maintained open-source mobile apps. Our study
revealed root causes and manifestation of energy issues. Inspired
by this study, we fully implemented a novel testing framework for
detecting energy issues. It first statically analyses the source code of
app subjects and then extracts the candidate input-sequences with
large probability of causing energy issues. We also devised several
artificial runtime contexts that can expose deeply-hidden energy
issues. Our framework effectively examines apps with the inputs
and contexts under a systematic scheme, and then automatically
identifies energy issues from power traces. A large-scale experimen-
tal evaluation showed that our framework is capable of detecting a
large number of energy issues, most of which existing techniques
cannot handle. These issues on average double the energy cost of
the apps. Finally, we showed how developers can utilize our test
reports to fix the issues.

ACKNOWLEDGEMENT
This research was supported in part by the China NSFC Grant
(61902249, 61802164, 61872248 and 61702343), Guangdong NSF
2017A030312008, Shenzhen Science and Technology Foundation
(No. ZDSYS20190902092853047), Guangdong Science and Technol-
ogy Foundation (2019B111103001, 2019B020209001), GDUPS (2015).
Kaishun Wu is the corresponding author.

REFERENCES
[1] B. Anand, K. Thirugnanam, J. Sebastian, P. G. Kannan, A. L. Ananda, M. C. Chan,

and R. K. Balan. Adaptive display power management for mobile games. In
Proceedings of the 9th International Conference on Mobile Systems, Applications,
and Services, MobiSys ’11, pages 57–70, New York, NY, USA, 2011. ACM.

[2] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury. Detecting
energy bugs and hotspots inmobile apps. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2014, pages
588–598, New York, NY, USA, 2014. ACM.

[3] B. R. Bruce, J. Petke, and M. Harman. Reducing energy consumption using
genetic improvement. In Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation, GECCO ’15, pages 1327–1334, New York, NY,
USA, 2015. ACM.

[4] D. H. Bui, Y. Liu, H. Kim, I. Shin, and F. Zhao. Rethinking energy-performance
trade-off in mobile web page loading. In Proceedings of the 21st Annual Inter-
national Conference on Mobile Computing and Networking, MobiCom ’15, pages
14–26, New York, NY, USA, 2015. ACM.

[5] X. Chen, A. Jindal, N. Ding, Y. C. Hu, M. Gupta, and R. Vannithamby. Smartphone
background activities in the wild: Origin, energy drain, and optimization. In
Proceedings of the 21st Annual International Conference on Mobile Computing and
Networking, MobiCom ’15, pages 40–52, New York, NY, USA, 2015. ACM.

[6] C. Chiasserini and R. Rao. Improving battery performance by using traffic shaping
techniques. Selected Areas in Communications, IEEE Journal on, 19(7):1385–1394,
Jul 2001.

[7] V. Devadas and H. Aydin. On the interplay of voltage/frequency scaling and
device power management for frame-based real-time embedded applications.
IEEE Transactions on Computers, 61(1):31–44, Jan 2012.

[8] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters a density-based algorithm for discovering clusters in large
spatial databases with noise. In Proceedings of the Second International Conference
on Knowledge Discovery and Data Mining, KDD’96, pages 226–231. AAAI Press,
1996.

[9] N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia, J. Auricchio, P. Huang,
M. Arora, S. Nath, V. Bhatt, J. Babb, S. Swanson, and M. Taylor. The GreenDroid
mobile application processor: An architecture for silicon’s dark future. Micro,
IEEE, 31(2):86–95, March 2011.

[10] M. Halpern, Y. Zhu, and V. J. Reddi. Mobile cpu’s rise to power: Quantifying
the impact of generational mobile cpu design trends on performance, energy,

and user satisfaction. In 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 64–76, 2016.

[11] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan. Estimating mobile application
energy consumption using program analysis. In Proceedings of the 2013 Interna-
tional Conference on Software Engineering, ICSE ’13, pages 92–101, Piscataway,
NJ, USA, 2013. IEEE Press.

[12] S. He, Y. Liu, and H. Zhou. Optimizing smartphone power consumption through
dynamic resolution scaling. In Proceedings of the 21st Annual International Con-
ference on Mobile Computing and Networking, MobiCom ’15, pages 27–39, New
York, NY, USA, 2015. ACM.

[13] C. Hwang, S. Pushp, C. Koh, J. Yoon, Y. Liu, S. Choi, and J. Song. Raven: Perception-
aware optimization of power consumption for mobile games. In Proceedings of
the 23rd Annual International Conference on Mobile Computing and Networking,
MobiCom ’17, pages 422–434, New York, NY, USA, 2017. ACM.

[14] A. Iranli and M. Pedram. DTM: Dynamic tone mapping for backlight scaling. In
Proceedings of the 42Nd Annual Design Automation Conference, DAC ’05, pages
612–617, New York, NY, USA, 2005. ACM.

[15] R. Jabbarvand, J.-W. Lin, and S. Malek. Search-based energy testing of android.
In Proceedings of the 41st International Conference on Software Engineering, ICSE
’19, pages 1119–1130. IEEE Press, 2019.

[16] R. Jabbarvand and S. Malek. Mdroid: An energy-aware mutation testing frame-
work for android. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017, pages 208–219, New York, NY, USA, 2017.
Association for Computing Machinery.

[17] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Understanding and detecting real-
world performance bugs. In Proceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’12, pages 77–88, New
York, NY, USA, 2012. ACM.

[18] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya. Virtual machine
power metering and provisioning. In Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC ’10, pages 39–50, New York, NY, USA, 2010. ACM.

[19] J. Koo, K. Lee,W. Lee, Y. Park, and S. Choi. Batttracker: Enabling energy awareness
for smartphone using li-ion battery characteristics. In IEEE INFOCOM 2016 - The
35th Annual IEEE International Conference on Computer Communications, pages
1–9, April 2016.

[20] K. Kumar and Y. Lu. Cloud computing for mobile users: Can offloading computa-
tion save energy? Computer, 43(4):51–56, April 2010.

[21] S. Lee, C. Yoon, and H. Cha. User interaction-based profiling system for android
application tuning. In Proceedings of the 2014 ACM International Joint Conference
on Pervasive and Ubiquitous Computing, UbiComp ’14, pages 289–299, New York,
NY, USA, 2014. ACM.

[22] D. Li and W. G. J. Halfond. An investigation into energy-saving programming
practices for android smartphone app development. In Proceedings of the 3rd
International Workshop on Green and Sustainable Software, GREENS 2014, pages
46–53, New York, NY, USA, 2014. ACM.

[23] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan. Calculating source line level
energy information for Android applications. In Proceedings of the 2013 Inter-
national Symposium on Software Testing and Analysis, ISSTA 2013, pages 78–89,
New York, NY, USA, 2013. ACM.

[24] L. Li, T. F. Bissyandé, H. Wang, and J. Klein. Cid: Automating the detection of
api-related compatibility issues in android apps. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2018,
pages 153–163, New York, NY, USA, 2018. ACM.

[25] X. Li, G. Chen, and W. Wen. Energy-efficient execution for repetitive app usages
on big.little architectures. In Proceedings of the 54th Annual Design Automation
Conference 2017, DAC ’17, pages 44:1–44:6, New York, NY, USA, 2017. ACM.

[26] X. Li and J. P. Gallagher. A source-level energy optimization framework for
mobile applications. In 2016 IEEE 16th International Working Conference on Source
Code Analysis and Manipulation (SCAM), pages 31–40, Oct 2016.

[27] F. X. Lin, Z.Wang, R. LiKamWa, and L. Zhong. Reflex: Using low-power processors
in smartphones without knowing them. SIGPLAN Not., 47(4):13–24, Mar. 2012.

[28] J. Liu and L. Zhong. Micro power management of active 802.11 interfaces. In
Proceedings of the 6th International Conference on Mobile Systems, Applications,
and Services, MobiSys ’08, pages 146–159, New York, NY, USA, 2008. ACM.

[29] Y. Liu, C. Xu, S. Cheung, and V. Terragni. Understanding and detecting wake
lock misuses for android applications. In Proceedings of the 24th ACM SIGSOFT
International Symposium on the Foundations of Software Engineering, FSE 2016,
2016.

[30] Y. Liu, C. Xu, and S.-C. Cheung. Characterizing and detecting performance bugs
for smartphone applications. In Proceedings of the 36th International Conference
on Software Engineering, ICSE 2014, pages 1013–1024, New York, NY, USA, 2014.
ACM.

[31] Y. Liu, C. Xu, S. C. Cheung, and J. LÃĳ. Greendroid: Automated diagnosis of
energy inefficiency for smartphone applications. IEEE Transactions on Software
Engineering, 40(9):911–940, Sep. 2014.

[32] X. Ma, P. Huang, X. Jin, P. Wang, S. Park, D. Shen, Y. Zhou, L. K. Saul, and G. M.
Voelker. edoctor: Automatically diagnosing abnormal battery drain issues on
smartphones. In Presented as part of the 10th USENIX Symposium on Networked

126

Detecting and Diagnosing Energy Issues for Mobile Applications ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Systems Design and Implementation (NSDI 13), pages 57–70, Lombard, IL, 2013.
USENIX.

[33] A. Mallik, J. Cosgrove, R. P. Dick, G. Memik, and P. Dinda. Picsel: Measuring
user-perceived performance to control dynamic frequency scaling. In Proceedings
of the 13th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XIII, pages 70–79, New York, NY,
USA, 2008. ACM.

[34] I. Manotas, L. Pollock, and J. Clause. Seeds: A software engineer’s energy-
optimization decision support framework. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages 503–514, New York, NY,
USA, 2014. ACM.

[35] M. Martins, J. Cappos, and R. Fonseca. Selectively taming background android
apps to improve battery lifetime. In 2015 USENIX Annual Technical Conference
(USENIX ATC 15), pages 563–575, Santa Clara, CA, 2015. USENIX Association.

[36] A. Memon, I. Banerjee, and A. Nagarajan. Gui ripping: reverse engineering
of graphical user interfaces for testing. In 10th Working Conference on Reverse
Engineering, 2003. WCRE 2003. Proceedings., pages 260–269, Nov 2003.

[37] A. Nistor, T. Jiang, and L. Tan. Discovering, reporting, and fixing performance
bugs. In Proceedings of the 10th Working Conference on Mining Software Reposito-
ries, MSR ’13, pages 237–246, Piscataway, NJ, USA, 2013. IEEE Press.

[38] A. Nistor and L. Ravindranath. Suncat: Helping developers understand and
predict performance problems in smartphone applications. In Proceedings of
the 2014 International Symposium on Software Testing and Analysis, ISSTA 2014,
pages 282–292, New York, NY, USA, 2014. ACM.

[39] A. Pathak, Y. C. Hu, and M. Zhang. Bootstrapping energy debugging on smart-
phones: A first look at energy bugs in mobile devices. In Proceedings of the 10th
ACM Workshop on Hot Topics in Networks, HotNets-X, pages 5:1–5:6, New York,
NY, USA, 2011. ACM.

[40] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent inside my app?:
Fine grained energy accounting on smartphones with Eprof. In Proceedings of the
7th ACM European Conference on Computer Systems, EuroSys ’12, pages 29–42,
New York, NY, USA, 2012. ACM.

[41] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra. Integrated cpu-gpu power manage-
ment for 3d mobile games. In Proceedings of the 51st Annual Design Automation
Conference on, pages 1–6, 2014.

[42] C. Poellabauer and K. Schwan. Energy-aware traffic shaping for wireless real-time
applications. In Real-Time and Embedded Technology and Applications Symposium,
2004. Proceedings. RTAS 2004. 10th IEEE, pages 48–55, May 2004.

[43] L. Qiu, Y. Wang, and J. Rubin. Analyzing the analyzers: Flowdroid/iccta, aman-
droid, and droidsafe. In Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2018, pages 176–186, New
York, NY, USA, 2018. ACM.

[44] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller, and S. Shayan-
deh. Appinsight: Mobile app performance monitoring in the wild. In Proceedings
of the 10th USENIX Conference on Operating Systems Design and Implementation,
OSDI’12, pages 107–120, Berkeley, CA, USA, 2012. USENIX Association.

[45] A. Sehati and M. Ghaderi. Energy-delay tradeoff for request bundling on smart-
phones. In IEEE INFOCOM 2017 - IEEE Conference on Computer Communications,
pages 1–9, May 2017.

[46] A. Shye, B. Scholbrock, and G. Memik. Into the wild: Studying real user activity
patterns to guide power optimizations for mobile architectures. In Proceedings
of the 42Nd Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 42, pages 168–178, New York, NY, USA, 2009. ACM.

[47] J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins. Turducken: Hierarchical
power management for mobile devices. In Proceedings of the 3rd International
Conference on Mobile Systems, Applications, and Services, MobiSys ’05, pages
261–274, New York, NY, USA, 2005. ACM.

[48] K. Sucipto, D. Chatzopoulos, S. KostaÂś, and P. Hui. Keep your nice friends
close, but your rich friends closer âĂŤ computation offloading using nfc. In IEEE
INFOCOM 2017 - IEEE Conference on Computer Communications, pages 1–9, May
2017.

[49] T. Tuan, S. Kao, A. Rahman, S. Das, and S. Trimberger. A 90nm low-power FPGA
for battery-powered applications. In Proceedings of the 2006 ACM/SIGDA 14th
International Symposium on Field Programmable Gate Arrays, FPGA ’06, pages
3–11, New York, NY, USA, 2006. ACM.

[50] L. Wang, M. French, A. Davoodi, and D. Agarwal. FPGA dynamic power mini-
mization through placement and routing constraints. EURASIP J. Embedded Syst.,
2006(1):7–7, Jan. 2006.

[51] F. Xu, Y. Liu, Q. Li, and Y. Zhang. V-edge: Fast self-constructive power modeling
of smartphones based on battery voltage dynamics. In Presented as part of the
10th USENIX Symposium on Networked Systems Design and Implementation (NSDI
13), pages 43–55, Lombard, IL, 2013. USENIX.

[52] H. Yamamoto, T. Hirano, K. Muto, H. Mikami, T. Goto, D. Hillenbrand, M. Taka-
mura, K. Kimura, and H. Kasahara. Oscar compiler controlled multicore power
reduction on android platform. In Languages and Compilers for Parallel Comput-
ing, pages 155–168, Cham, 2014. Springer International Publishing.

[53] Z. Yan and C. W. Chen. Rnb: Rate and brightness adaptation for rate-distortion-
energy tradeoff in http adaptive streaming over mobile devices. In Proceedings of
the 22Nd Annual International Conference on Mobile Computing and Networking,
MobiCom ’16, pages 308–319, New York, NY, USA, 2016. ACM.

[54] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha. Appscope: Application energy
metering framework for android smartphones using kernel activity monitoring.
In Proceedings of the 2012 USENIX Conference on Annual Technical Conference,
USENIX ATC’12, pages 36–36, Berkeley, CA, USA, 2012. USENIX Association.

[55] S. Zaman, B. Adams, and A. E. Hassan. A qualitative study on performance bugs.
In Proceedings of the 9th IEEE Working Conference on Mining Software Repositories,
MSR ’12, pages 199–208, Piscataway, NJ, USA, 2012. IEEE Press.

[56] L. Zhong and N. K. Jha. Energy efficiency of handheld computer interfaces: Limits,
characterization and practice. In Proceedings of the 3rd International Conference
on Mobile Systems, Applications, and Services, MobiSys ’05, pages 247–260, New
York, NY, USA, 2005. ACM.

[57] Y. Zhu, M. Halpern, and V. J. Reddi. Event-based scheduling for energy-efficient
qos (eqos) in mobile web applications. In 2015 IEEE 21st International Symposium
on High Performance Computer Architecture (HPCA), pages 137–149, Feb 2015.

127

	Abstract
	1 Introduction
	2 Data Source
	3 Empirical Study
	3.1 RQ1: What Are the Common Root Causes of Energy Issues?
	3.2 RQ2: How Do Energy Issues Manifest Themselves in Practice?

	4 Overview of Testing Framework
	5 Detailed technology
	5.1 Preparation before Testing
	5.2 Steer the Test Direction On-the-fly
	5.3 Identify Energy Issues from Power Trace
	5.4 Manual Verification
	5.5 Comparison with the Most Relevant Work

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 The Efficacy of Our Testing Framework
	6.3 Issue Cause and Manifestation

	7 Related Work
	8 Conclusion
	References

