
Watchman: Monitoring Dependency Conflicts for Python
Library Ecosystem

Ying Wang
wangying@swc.neu.edu.cn

Software College, Northeastern
University, China

Ming Wen∗
mwenaa@hust.edu.cn

School of Cyber Science and
Engineering, HUST, China

Yepang Liu∗
liuyp1@sustech.edu.cn

Department of Computer Science and
Engineering, SUSTech, China

Yibo Wang, Zhenming Li,
Chao Wang

{wybneu,lzmneu,wangcneu}@163.com
Software College, Northeastern

University, China

Hai Yu
yuhai@mail.neu.edu.cn

Software College, Northeastern
University, China

Shing-Chi Cheung
scc@cse.ust.hk

Department of Computer Science and
Engineering, HKUST, China

Chang Xu
changxu@nju.edu.cn

State Key Lab for Novel Software
Technology and Department of

Computer Science and Technology,
Nanjing University, China

Zhiliang Zhu
zzl@mail.neu.edu.cn

Software College, Northeastern
University, China

ABSTRACT

The PyPI ecosystem has indexed millions of Python libraries to al-
low developers to automatically download and install dependencies
of their projects based on the specified version constraints. De-
spite the convenience brought by automation, version constraints
in Python projects can easily conflict, resulting in build failures.
We refer to such conflicts as Dependency Conflict (DC) issues. Al-
though DC issues are common in Python projects, developers lack
tool support to gain a comprehensive knowledge for diagnosing the
root causes of these issues. In this paper, we conducted an empirical
study on 235 real-world DC issues. We studied the manifestation
patterns and fixing strategies of these issues and found several key
factors that can lead to DC issues and their regressions. Based on
our findings, we designed and implemented Watchman, a tech-
nique to continuously monitor dependency conflicts for the PyPI
ecosystem. In our evaluation,Watchman analyzed PyPI snapshots
between 11 Jul 2019 and 16 Aug 2019, and found 117 potential DC
issues. We reported these issues to the developers of the correspond-
ing projects. So far, 63 issues have been confirmed, 38 of which
have been quickly fixed by applying our suggested patches.

∗MingWen and Yepang Liu are the corresponding authors of this paper. HUST, SUSTech,
and HKUST are short for Huazhong University of Science and Technology, Southern
University of Science and Technology, and The Hong Kong University of Science and
Technology, respectively.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380426

CCS CONCEPTS

• Software and its engineering→ Software libraries and reposi-

tories;

KEYWORDS

Python, dependency conflicts, software ecosystem

ACM Reference Format:

Ying Wang, Ming Wen, Yepang Liu, Yibo Wang, Zhenming Li, Chao Wang,
Hai Yu, Shing-Chi Cheung, Chang Xu, and Zhiliang Zhu. 2020. Watchman:
Monitoring Dependency Conflicts for Python Library Ecosystem. In Pro-

ceedings of 42nd International Conference on Software Engineering, Seoul,

Republic of Korea, May 23–29, 2020 (ICSE ’20), 11 pages.
https://doi.org/10.1145/3377811.3380426

1 INTRODUCTION

Python projects are commonly shared as third-party libraries in
a server-side central repository PyPI [42], and reused by other
projects with a client-side library installer pip [36, 46, 55]. By June
2019, the PyPI ecosystem (PyPI for short) has indexed over 1.43
million Python libraries together with their metadata (e.g., version
information, dependencies on other libraries, etc.).

To use a library on PyPI, developers need to specify the desired
version constraint [51] in a configuration script such as setup.py
and requirements.txt [44]. When a library is reused by another
project, this library and other libraries on which it depends will be
automatically installed at the project’s build time. The automation
smartly combines a server-side central repository and a client-side
library installer to manage library dependencies. It considerably
simplifies the build process of Python projects. Besides, the version
constraint mechanism for a required library allows developers to
restrict the dependencies to a set of compatible versions and enables
automatic library evolution [3]. However, such automation comes
with the risk of potential Dependency Conflict (DC) issues, which

https://doi.org/10.1145/3377811.3380426
https://doi.org/10.1145/3377811.3380426

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Wang, Wen, Liu, Wang, Li, Wang, Yu, Cheung, Xu, Zhu

/*channels 2.1.7 */
asgiref ≥ 2.3, < 3.0
daphne ≥ 2.2, < 3.0

(installed 2.3.0)
(installed 2.2.5)
(installed 2.3.0)

Before 9 Apr, 2019
After 9 Apr, 2019

/*channels 2.2.0 */
asgiref ≥ 3.0, < 4.0
daphne ≥ 2.2, < 3.0

(installed 3.1.1)
(installed 2.3.0)

14 Apr, 2019, Fixed Version

/*daphne 2.2.5 */
It does not require asgiref

/*daphne 2.3.0 */
asgiref ≥ 3.0, < 4.0

Build Error : asgiref 2.3.0 is installed but asgiref ≥ 3.0, < 4.0 is required.

/*channels-redis 2.3.3 */
asgiref ≥ 2.1, < 3.0
channels ≥ 2.0, < 3.0

(installed 2.3.0)
(installed 2.1.7)
(installed 2.2.0)

Before 9 Apr, 2019
After 14 Apr, 2019

(a.2)
No conflict

(c.2)
Conflicting

(a)

(b)

(c)

(a.1)
Conflicting

(c.1)
No conflict

Figure 1: Illustrative examples of dependency conflict issues

can cause build failures when the installed version of a library
violates certain version constraints on the library.

Figure 1 gives a real example: issue #1277 [6] in channels. As
shown in channels 2.1.7’s configuration script, it directly requires
libraries asgiref (version constraint: ⟨≥ 2.3 ∧ < 3.0 ⟩) and daphne
(version constraint: ⟨≥ 2.2 ∧ < 3.0 ⟩). Note that when downloading
a library, the pip installer always chooses the latest version on
PyPI that satisfies the library’s version constraint [37]. No DC
issues occurred when channels 2.1.7 was built before 9 Apr 2019.
Both asgiref 2.3.0 and daphne 2.2.5 selected for the build satisfy
the concerned constraints. However, issue #1277 [6] arose after
9 Apr 2019 when channels 2.1.7 was built via selecting the newly
released library daphne 2.3.0, which additionally requires library
asgiref (version constraint: ⟨≥ 3.0 ∧ < 4.0⟩). The DC issue (the
red curve a.1) happened because pip selected asgiref 2.3.0 to
satisfy the direct dependency constraint ⟨≥ 2.3 ∧ < 3.0⟩, but this
version violated the constraint ⟨≥ 3.0 ∧ < 4.0⟩ specified in daphne
2.3.0. This issue caused a build error as shown in Figure 1(b).

To fix the issue, channels’s developers released version 2.2.0 on
14 Apr 2019, which updated the requirement on asgrief’s version
to ⟨≥ 3.0 ∧ < 4.0⟩. This update led to the installation of asgrief
3.1.1 (the latest version under 4.0) when building channels 2.2.0,
thus resolving the failure (the green curve a.2). However, this fix in-
duced another DC issue in channels-redis (issue #152 [7]), as Fig-
ure 1(c) shows. After the upgrade of channels, to build channels
-redis 2.3.3, pip still selected asgiref 2.3.0 to satisfy the direct
dependency constraint ⟨≥ 2.1 ∧ < 3.0⟩. Unfortunately, this version
violates the constraint ⟨≥ 3.0 ∧ < 4.0⟩ that is transitively introduced
by channel 2.2.0, causing a build failure (red curve c.2).

To understand the scale of DC issues in Python projects and
their characteristics, we empirically studied 235 DC issues in 124
popular Python projects, which were reported on GitHub in the
last five years. We explored the following two research questions:
• RQ1 (ManifestationPatterns):How doDC issuesmanifest them-

selves in Python projects? Are there common patterns that can be

leveraged for automated diagnosis of these issues?

• RQ2 (Fixing Strategies): How do developers fix DC issues in

Python projects? Are there common practices that can be leveraged

for automated repair of these issues?

Through investigating the research questions, we observe that
DC issues mainly arise from conflicts caused by remote dependency
updates or local environments (see Section 3.2). We also found
common strategies for fixing DC issues and key factors that can
lead to DC issues and their regressions (see Section 3.3).

As a real-world Python developer commented on the report of
pyenv issue #3118 [21], the dependency resolution in the Python
world is far from being easy. The difficulties are mainly attributed to

the complex dependencies across projects. Developers often specify
version constraints on the dependent libraries of their projects
without considering the constraints specified in other projects. To
be specific, we summarize three major challenges as follows.

First, the version of a library installed for a Python project can
vary over time. Recall that for each required library of a project,
pip will install its latest version satisfying the concerned constraint.
Therefore any update of libraries on PyPI can affect the version of
the libraries installed for the downstream projects (i.e., the projects
that depend on these libraries), causing potential build failures.

Second, when a library updates its version constraints on other
libraries, its downstream projects might be affected. The impact
can be further propagated to a wide range of projects.

Third, it is difficult for Python developers to obtain a full picture
of their projects’ dependencies with version constraint information.
State-of-the-art tools like pipenv and Poetry only show which
libraries have been installed, rather than their dependencies.

To address the challenges and help Python developers combat
DC issues, we designed a technique,Watchman, which performs
a holistic analysis from the perspective of the entire PyPI ecosys-
tem, to continuously monitor dependency conflicts caused by li-
brary updates. For each library on PyPI,Watchman builds a Full
Dependency Graph (FDG), a formal model that simulates the pro-
cess of installing dependencies for Python projects. The FDGs can
be incrementally updated as the libraries evolve on PyPI. Watch-
man then analyzes them to detect and proactively prevent DC
issues. Since FDGs record full dependencies of Python projects
with version constraints, they can also provide useful diagnostic
information to help developers understand the root causes of the
detected DC issues, thus facilitating issue fixing.

To evaluateWatchman, we played back the evolution history of
all libraries on PyPI, from 1 Jan 2017 to 30 Jun 2019 and deployed
Watchman to detect DC issues. After analyzing PyPI snapshots
during this time period, Watchman detected 515 DC issues and
502 (97.5%) of them were indeed fixed by developers during the
evolution of the libraries. To evaluate the usefulness of Watchman,
we ran it to monitor dependency conflicts for the PyPI ecosystem
between 11 Jul 2019 and 16 Aug 2019. During the time period,
it detected and reported 117 previously-unknown DC issues, 63
of which (53.8%) have been confirmed by developers. Further, 38
(60.3%) confirmed issues have been fixed by applying our suggested
patches. Developers also expressed great interests inWatchman.
In summary, our work makes three major contributions:

• Originality: To the best of our knowledge, we conducted the
first empirical study of DC issues in open-source Python projects.
Our findings help understand the characteristics of DC issues
and provide guidance to future studies related to this topic.
• Dataset: We release the dataset for empirical study, comprising
235 DC issues collected from 124 real-world Python projects, to
facilitate future research.
• Technique:We proposed a formal model to simulate the build
process of Python projects and developed a DC issue diagnos-
tic technique Watchman (http://www.watchman-pypi.com/)
based on the model. Experimental results show that Watchman
can monitor the entire PyPI ecosystem and detect DC issues
with a high precision.

Watchman: Monitoring Dependency Conflicts for Python Library Ecosystem ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Python Project

Upstream Projects

Transitive
Dependency

Direct
Dependency

Downstream
Projects

Depend on Relationship

<C>

<C>

<C>

<C>

<C>

Remote DependencyLocal Dependency

GCC, Python, …

Developer

Local Environment

Build Failure Caused by
DC Issues

The PyPI Ecosystem 2019-0
3-21

2019-05-10

Released Library
Remote Dependency
Direct Dependency
Local Environment

Figure 2: Dependencies of a Python project

2 PRELIMINARIES

2.1 Dependencies of Python Projects

Figure 2 illustrates the concept of Python project dependencies.
Code reuse is pervasive in the Python world, where projects often
reuse other projects as libraries. The configuration script of a project
P explicitly constrains the versions of direct dependencies that P
may use. If these direct dependencies further rely on other libraries,
such libraries are called transitive dependencies of P . In this paper,
all direct and transitive dependencies are collectively referred to as
the upstream projects of P . Correspondingly, we call P a downstream
project of its dependencies.

Python projects are often developed in a self-contained envi-
ronment, which can be created by tools such as virtualenv [43],
conda [2], and pipenv [38]. When building a Python project, the
library installer pip downloads most of the required libraries from
PyPI. We refer to such libraries that need to be downloaded as
remote dependencies. For each required remote dependency, pip
downloads it according to its name and version constraint. If multi-
ple releases of a library on PyPI satisfy the version constraint, pip
downloads and installs the latest version of the library [36].

Besides remote dependencies, the development of a Python
project can be affected by its local environment, including the local
development tool chains (e.g., the Python interpreter and GCC) and
local dependencies (i.e., libraries that are already installed). Local
dependencies exist when the development environment is not clean
(e.g., the project is not developed in an isolated virtual environment).
If any version of a required dependency has been installed locally,
pip will not download the dependency from PyPI.

2.2 Library Version Constraints

To use a library, a Python project needs to specify a constraint on its
desired library versions as shown in Figure 2 (i.e., the C annotated
on some edges). To facilitate subsequent discussions, we formally
define version constraint using the grammar below (versionid refers
to a specific version of a library, e.g., 1.24.1):

CF ϵ | range ∧ extra | = versionid
rangeF range ∧ op versionid | op versionid
extraF ϵ | , versionid | extra ∧ , versionid
op F > | ≥ | < | ≤

(1)

A constraint C could be empty, in which case pip will choose
to download the latest version of the library from PyPI if the li-
brary is not installed in the local environment. Developers may also
specify a specific version that is desired (e.g., = 1.24.1) or undesired

Number of projects in each category

Utilities
Administration
Installation/Setup
Testing
Libraries
Build Tools
Development
Security
Engineering
Office/Business
OthersStars Forks Issues Revisions Downstream

Projects

Category

KLOC

KLOC
0K-1K
1K-5K
5K-10K
10K-50K
50K-100K
100K-500K

111810204671371810

17 33 19 28 17 10

0

2000

4000

6000

8000

0

1000

2000

3000

4000

5000

0

2000

4000

6000

8000

0

1

2

3

4

x 10
4

0

2000

4000

6000

8000×10

Figure 3: Statistics of the projects used in our empirical study

(e.g., , 1.24.1). In practice, developers mostly specify a range of
versions in a constraint (e.g., ≤ 1.24.1 ∧ > 1.11.0). To understand
how frequent ranges are used in version constraints, we inves-
tigated the top 1,000 popular Python projects on PyPI based on
the number of downstream projects. We found that 92.2% of these
projects’ direct dependencies are constrained to a range of versions.
In comparison, this ratio is only 0.03% for Java projects managed by
Maven following the same investigation method. Such heavy uses
of ranges in version constraints for dependencies make the diagno-
sis of DC issues in the Python world complicated and challenging
(see Section 3).

3 EMPIRICAL STUDY

3.1 Data Collection

Following the data collection process of existing studies [47, 49, 58],
we prepared our dataset in two steps.

Step 1: Selecting subjects. To understand the manifestation
patterns and fixing strategies of DC issues, we need to study the
issue reports (with discussions if any), dependency configuration
scripts, issue-fixing patches, and related code revisions. For this
purpose, we searched GitHub for Python projects that satisfy three
conditions: (1) popular : having more than 50 stars or forks, (2) being
used as libraries: containing more than three direct downstream
projects, and (3) well-maintained: having over 500 code revisions
or over 50 issue reports. With this process, we obtained 1,596 open-
source Python projects.

Step 2: Identifying DC issues. To locate DC issues in the 1,596
projects, we searched for the issue reports that contain keywords
“dependency conflict” or “dependency hell” (case insensitive), filed
between Jul 2014 and Jul 2019 (i.e., in the past five years). We
obtained 2,593 and 334 issue reports by searching with the two
keywords, respectively. Next, we removed duplicates and noises
from the search results and kept only those issue reports that satisfy
the following three conditions. First, the report is related to valid DC
issues. Second, the report contains descriptions of issue root causes.
Third, we can find code revisions that fix the reported issue(s) in the
concerned project’s code repository or there is an explicit consensus
on the fixing solutions among developers as documented in the
issue report.

Eventually, we obtained 235 DC issues from 124 projects, and
201 of the 235 issues have been fixed. Figure 3 shows the statistics
of the 124 projects. As we can see, they are: (1) large in size (around
38 KLOC on average), (2) well-maintained (containing 78 revisions
and 92 issues on average), (3) popular (83% of them have over
100 stars), (4) impactful (86% of them have more than 5 direct

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Wang, Wen, Liu, Wang, Li, Wang, Yu, Cheung, Xu, Zhu

downstream projects), and (5) diverse (covering over 10 categories).
In the following, we study the 235 issues to answer RQ1–2.

3.2 RQ1: Manifestation Patterns

DC issues in Python projects manifest themselves due to different
causes. Our studied issues can be divided into two categories ac-
cording to whether the issues are caused by remote dependencies or
local environment. In the following, we discuss the manifestation
patterns of the issues in detail with illustrative examples.

Finding 1: 211 out of the 235 (89.8%) DC issues that involve the

violation of library version constraints were introduced by the

updates of remote dependencies on PyPI.

3.2.1 Pattern A: Conflicts caused by remote dependency updates.

The root cause of the 211 issues is that the updates of some remote
dependency change the version of the concerned library to be in-
stalled by pip, which is hardly perceptible to project developers.
Suppose that a Python project P requires a library β with a con-
straint C . If C does not specify an upper bound on β ’s version (e.g.,
C = ⟨≥ 3.0⟩), or the specified upper bound is greater than the latest
version of β on PyPI (e.g., C = ⟨2.0 ≤ ∧ ≤ 4.0⟩, while the latest
version of β is 3.0), then the version of β used to build P may not
be controllable in developers’ perspective, meaning that β can be
upgraded when there are new versions on PyPI. Such upgrading
can easily induce DC issues: β ’s new version may not satisfy the
constraints specified by other dependencies of P ; the version con-
straints specified by β for its own libraries may also change in new
versions, causing potential conflicts with the constraints for the
same libraries introduced by P ’s other dependencies.

The 211 issues can be further categorized based on where the
dependency conflicts come from. Theoretically, conflicts could hap-
pen in three different cases: (1) among direct dependencies, (2)
between direct dependencies and transitive dependencies, and (3)
among transitive dependencies. However, developers usually will
not introduce conflicts among direct dependencies by including
two conflicting libraries in the configuration script (such mistakes
can be easily caught). Indeed, we did not observe any conflicts of
the first case. In the following, we discuss the latter two cases.

a. Conflicts between direct and transitive dependencies (139/211).
Suppose that a Python project P directly depends on two libraries α
and β with the version constraints CP→α and CP→β , respectively,
and β further depends on α with the version constraint Cβ→α . In
other words, α is not only a direct dependency of P , but also re-
quired by other direct dependencies of P (i.e., α can also be seen as
a transitive dependency of P). When building P , pip will always
install the latest version v of the library α that satisfies CP→α , as
α is at the top level of P ’s dependency tree [36]. If v falls into the
version range(s) specified by Cβ→α , P will be built successfully.
However, once α gets updated on PyPI, the update may cause pip
to install another version v ′ of α . If v ′ falls out of the range(s)
specified by Cβ→α , P will not be built successfully. For instance,
in issue #229 [15], the project gallery-dl directly requires the
libraries requests ⟨≥ 2.11.0⟩ and urllib3 ⟨≥ 1.16 ∧ , 1.24.1⟩.
pip installed the version 2.13.0 of requests, which also depends
on urllib3 ⟨< 1.25.0 ∧ ≥ 1.21.1⟩. Things worked smoothly when
gallery-dl was first released on PyPI, as the latest version of

urllib3 at that time was 1.24.2, which satisfies the constraints
⟨≥ 1.16 ∧ , 1.24.1⟩ and ⟨< 1.25.0 ∧ ≥ 1.21.1⟩. However, when the
project urllib3was updated to 1.25.0 on 18Apr 2019, gallery-dl
began to suffer from build failures. This is because when build-
ing gallery-dl, pip will install the latest version (i.e., 1.25.0)
of urllib3. However, the version 1.25.0 violates the constraint
⟨< 1.25.0 ∧ ≥ 1.21.1⟩ specified in requests.

b. Conflicts between transitive dependencies (72/211). Suppose that
a Python project P directly depends on two libraries α and β , both
of which depend on another library θ but with two different ver-
sion constraints Cα→θ and Cβ→θ , respectively. If the version v
of θ downloaded by pip according to Cα→θ (suppose that it has
a higher priority) also satisfies Cβ→θ , the project P can be built
successfully. However, since α and β are two separate projects, their
dependency relationship on θ may evolve over time. There can be
cases where the updates of α or β would result in conflicting version
constraints of θ , consequently causing DC issues when building
P . We observed 72 such issues in our study. For example, the issue
report #3826 [24] of rasa documented an incident that a project
was forced to introduce multiple version constraints of the library
requests by its direct dependencies rasa and sagemaker. The
reason is that rasa released a new version 1.0.4 and added a con-
straint ⟨= 2.22.0⟩ on requests. However, this constraint is in con-
flict with another constraint on requests ⟨≥ 2.20.0 ∧ < 2.21.0⟩
introduced by sagemaker.

Finding 2: 24 out of the 235 (10.2%) DC issues arose due to the con-

flicts between remote dependencies and the tools/libraries installed

in the local environment.

3.2.2 Pattern B: Conflicts affected by local environment. Such
issues can happen when the required tool of a remote dependency is
incompatible with the local installed one (e.g., requiring Python 3.7.*
but installed Python 3.6.*). They can also happen when the version
of a dependency, which is already installed in the local environment,
does not satisfy the constraint specified by a remote dependency.
Take issue #25316 [17] of gradient as an example. The project
failed to be built because there was already one version (1.13.3)
of the library numpy installed in the local environment before the
build, and this version is in conflict with the constraint ⟨≥ 1.15⟩
specified by pandas v0.24.1, a direct dependency of gradient.

3.2.3 Dependency Smells. By further analyzing developers’ dis-
cussions in the issue reports and the dependency configuration
scripts of the project versions that were not affected by the reported
issues of Pattern A,1 we observed several types of “dependency
smells”. These smells are interesting as they do not immediately
cause DC issues but are likely to induce issues as the projects evolve.

Finding 3: Restricting dependencies to specific versions for com-

mon libraries could easily induce DC issues to downstream projects.

Build failures can easily happen if library version constraints
are too restrictive (e.g., only accepting specific versions), especially
for those common libraries. 59 of our studied 235 issues belong
to this case. For instance, the project molecule [41] depends on

1We ignored Pattern B issues as they are affected by developers’ local environments,
which are often unknown to us.

Watchman: Monitoring Dependency Conflicts for Python Library Ecosystem ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

a specific version of ansible-lint (i.e., version 3.4.23), a library
that is used by many other projects. This makes molecule’s down-
stream projects that also depend on ansible-lint particularly
sensitive to the updates of ansible-lint. We observe that when-
ever there was a new version of ansible-lint released on PyPI,
molecule’s developers would receive requests from downstream
projects to upgrade its version constraint on ansible-lint (e.g.,
[8, 11]). As there were too many such requests, molecule devel-
opers finally chose to update and loosen the version constraint on
ansible-lint to a range ⟨≥ 4.0.1 ∧ < 5⟩ [39], thus allowing more
downstream projects to work well with it.

Finding 4: DC issues can easily occur when the installed version

of a library satisfying one version constraint is close to the upper

bound specified in another version constraint.

67 out of the 235 issues belong to this case. As a library ver-
sion installed by pip in the concerned project is close to the upper
bound that another version constraint imposed on the library, up-
dates of the library will likely induce build failures. For instance,
the projects that directly require both request and urllib3 have
often encountered DC issues (e.g., [23, 27–29]). The reason is that
these projects always install the latest version of urllib3 since
the direct dependency constraints on urllib3 do not set an upper
bound. Besides, request also depends on urllib3 with a version
constraint ⟨≥ 1.21.1 ∧ < 1.23⟩. These projects were built success-
fully when urllib3’s latest version was 1.22.4, which satisfies
⟨≥ 1.21.1 ∧ < 1.23⟩. However, the installed latest version 1.22.4
was close to the upper bound 1.23. In such cases, DC issues can
easily arise when there comes a newer version of urllib3.

These findings are useful. We will show that identifying the two
types of smells can help perform predictive analysis to proactively
prevent DC issues before they cause real build failures.

3.3 RQ2: Fixing Strategies

To answer RQ2, we studied: (1) the patches of the 201 fixed issues,
(2) the planned fixing solutions of the remaining 34 issues, and
(3) the comments in the issue reports. We observed seven fixing
strategies, which altogether resolved 93.6% of our collected issues.

Strategy 1: Adjusting the version constraints of direct dependen-

cies (98/235). The conflicts between direct and transitive dependen-
cies were commonly fixed by adjusting the version constraints of
direct dependencies to be compatible with those of transitive depen-
dencies. For example, in issue #32 [22] of project valinor, there
were two conflicting version constraints on the library pyyaml.
One constraint ⟨≥ 3 ∧ < 5⟩ was directly specified by valinor. The
other constraint ⟨< 6.0 ∧ ≥ 5.1⟩ was transitively introduced by
pyOCD, a dependency of valinor. In such a case, any version of
pyyaml installed by pip, which satisfies the former constraint, will
violate the latter one. To fix the problem, the developers of valinor
revised the version constraint of pyyaml to ⟨< 6.0 ∧ ≥ 5.1⟩.

Strategy 2: Upgrading or downgrading the direct dependencies

that require conflicting libraries (27/235). Dependency conflicts be-
tween transitive dependencies can be solved by upgrading or down-
grading the direct dependencies that introduce the transitive depen-
dencies. Take issue #66 [31] of zhmcclient as an example. The two
conflicting version constraints ⟨= 4.0.3⟩ and ⟨≥ 4.4⟩ on coverage

were transitively introduced by zhmcclient’s direct dependen-
cies python-coveralls ⟨= 2.9.1⟩ and pytest-cov ⟨≥ 2.4.0⟩, re-
spectively. Since the installed version pytest-cov 2.6.0 added
coverage ⟨≥ 4.4⟩ as its direct dependency, which caused the con-
flict, zhmcclient’s developers downgraded pytest-cov by chang-
ing its version constraint to ⟨≥ 2.4.0 ∧ < 2.6.0⟩. After revising the
constraint, pytest-cov 2.5.1, which requires coverage ⟨≥ 3.71⟩,
was installed. This constraint ⟨≥ 3.71⟩ is not in conflict with
⟨= 4.0.3⟩ and thus the DC issue was resolved.

Strategy 3: Coordinating with upstream projects to adjust con-

flicting version constraints (51/235). DC issues can also be fixed via
coordinating with upstream projects. Take issue #740 [33] of the
project yotta as an example. Although the conflict can be resolved
by adjusting the direct dependency’s version constraint (i.e., fol-
lowing Strategy 1), the developers chose to coordinate with the
upstream projects to solve the problem. This avoids changing the
version of the directly required library.

Strategy 4: Removing conflicting direct dependencies and keeping

the transitive ones (8/235). When it is difficult to make a project’s
direct dependencies in line with its transitive ones, developers may
choose to remove the conflicting direct dependencies. For example,
as described in issue #407 [25] of the project wandb, conflicts oc-
curred when an upstream project updated its version constraint on
a direct dependency PyYAML, and this happened several times. As
wandb developers had no direct control on the upstream projects,
they removed the conflicting direct dependency from the configu-
ration script, and used the transitively introduced one instead.

Strategy 5: Adding direct dependencies (16/235). There are cases
when the version constraints Cα→θ and Cβ→θ of two conflicting
transitive dependencies overlap, meaning that one can find some
versions of the concerned library θ to satisfy both constraints. The
DC issue in such a case can be resolved by adding θ as a direct depen-
dencywith a constraint that entails bothCα→θ andCβ→θ . This will
instruct pip to install the version specified by the direct dependency
that satisfies both the transitive dependencies. For instance, in issue
#1586 [9] of crossbar, there exist two conflicting transitive depen-
dencies: urllib3 ⟨ < 1.25 ∧ ≥ 1.21.1⟩ and urllib3 ⟨≥ 1.24.2⟩. To
resolve the conflict, developers added urllib3 ⟨≥ 1.24.2 ∧ < 1.25⟩
as a direct dependency to avoid build failures.

Strategy 6: Upgrading/downgrading development tools (12/235).
The dependency conflicts between the local environment and the
remote dependencies are often solved by upgrading or downgrading
the development tools (e.g., issue #409 [26] of bandit).

Strategy 7: Creating an isolated environment (8/235). This is a
viable solution for resolving the dependency conflicts between
remote and locally installed dependencies. As recommended by
developers of spyder [35] and pandas [18], there are several tools
such as virtualenv [43], conda [2], and pipenv [38], which can
create virtual environments to isolate the impacts of locally installed
dependencies to avoid such DC issues.

There are nine issues that were fixed by restricting the conflicting
library to a specific version. However, this is not a good practice and
can induce new issues (e.g., [13, 14, 16]) as discussed in Finding 3.
The remaining six issues were fixed by specific workarounds.

Table 1 summarizes how each pattern of issues were fixed. From
the statistics, we can observe that there can be multiple ways to fix
DC issues of a certain pattern. In particular, issues of Pattern A.a

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Wang, Wen, Liu, Wang, Li, Wang, Yu, Cheung, Xu, Zhu

Table 1: Statistics of manifestation patterns and fixing strategies

Pattern

Strategy

1 2 3 4 5 6 7

A.a 94 9 19 8
A.b 18 32 16
B 4 12 8

can be fixed by adopting four different strategies, among which
Strategy 1 is the most wildly adopted one. This is because Python
developers have full control of the version constraints of their
projects’ direct dependencies. If adopting Strategy 1 will cause
side effects such as security loopholes, developers may solve the
conflicts by upgrading or downgrading the direct dependencies of
their projects (Strategy 2) or coordinating with upstream projects
to adjust conflicting version constraints (Strategy 3). For Pattern
A.b, developers often adopt Strategies 2, 3, and 5 to resolve the
issues. Issues of Pattern B are mainly resolved via dealing with the
local environments. Due to the page limit, we do not make further
discussions and we summarize our observations in the following.

Finding 5: There can be multiple fixes for a DC issue. The solutions

can be affected by the issue’s manifestation pattern, the topological

structure of the project’s dependency graph, pip’s installation rules,
and the interference between the version constraints of upstream

projects and those of downstream projects.

4 DEPENDENCY CONFLICT DIAGNOSIS

In view of many DC issues induced by complex dependencies
among upstream and downstream projects on PyPI, we further
propose a technique, Watchman, to continuously monitor depen-
dency conflicts from the perspective of the entire ecosystem.

Figure 4 gives an overview of our technique. A major challenge
is to perform a holistic analysis of the huge number of projects on
PyPI and model their interdependent relationships, which are sub-
ject to change over time. To address the challenge,Watchman first
collects the metadata for each library version, including its direct
dependencies with version constraints and their declaration orders.
Second, it consolidates the metadata of all libraries hosted on PyPI
into a single repository to enable the analysis of the interference
between the version constraints across upstream and downstream
projects. Then, by continuously monitoring library release infor-
mation on PyPI, Watchman synchronously updates the metadata
repository to precisely model the dependency relationships. For the
captured library updates,Watchman uses a depth-first searching
strategy to identify the affected downstream projects. It also per-
forms a breadth-first search of the metadata repository to construct
a full dependency graph for each potentially affected downstream
project, according to the library installation mechanism of pip.
Finally,Watchman performs the automatic DC issue diagnosis.

4.1 Constructing Metadata Repository

Tomodel the dependency relationships among libraries,Watchman
uses the metadata structure to capture the version constraints of
the direct dependencies of each library version and the declaration
orders of these direct dependencies. For ease of understanding, in
the subsequent discussions, we shall use lowercase Greek letters to
denote libraries and superscripts to denote versions.

Algorithm 1: Identifying Affected Downstream Projects
Input: Lup and G
Output: Laf

1 Laf ← {};
2 foreach ζ v ∈ Lup do

3 identifyAffectedLibrary(ζ v , Laf , G);

4 Function identifyAffectedLibrary(ζ v , Laf , G)
5 foreach G(δu) = (D , R, P) ∈ G do

6 if ζ ∈ D && v satisfies the constraint Cδu→ζ then

7 Laf ← Laf ∪ {δu };
8 identifyAffectedLibrary(δu , Laf , G);

Definition 1 (Metadata Structure): For a library version ζv ,
i.e., the version v of library ζ ,Watchman captures a collection of
information G(ζv) = (D,R, P) , where
• D = {α, β,γ · · · } is a set of direct dependencies of ζv .
• R = {Cζ v→δ | δ ∈ D}, where Cζ v→δ denotes the version con-
straint on the dependency δ specified by ζv .
• P maps each dependency δ ∈ D to its declaration order.

In our experiments to detect unknown DC issues,Watchman
extracted 1,423,291 versions of 191,787 distinct libraries from a
snapshot of PyPI on 15 Jun 2019. For each library version ζv ∈ L,
where L represents all library versions, it obtained the structured
metadata G(ζv) via analyzing the dependency configuration script
of ζv . Such metadata of all extracted library versions formed an
initial metadata repository G, which is defined as {G(ζv)|ζv ∈ L}.
This repository enables the queries of dependency relationships
among all upstream and downstream projects on PyPI.

4.2 Analyzing the Impacts of Library Updates

The analysis mainly consists of two steps as explained below.
Step 1: Monitoring library updates. Library updates on PyPI

often cause DC issues. There are two types of library updates on
PyPI: new versions of an existing library being released and new

libraries being released.Watchman computes Lup by monitoring
the two types of library updates on a daily basis. For each library
version ζv ∈ Lup , Watchman collects the metadata G(ζv) and
adds it to the repository G. In this manner, the metadata repository
G can be synchronized with the evolution of the libraries on PyPI.

Step 2: Identifying affected downstream projects. Watch-
man performs backward search for identifying the set of down-
stream projects affected by Lup , denoted Laf , following the pro-
cess as described in Algorithm 1. The algorithm works as follows.
First, it initializes Laf to an empty set (Line 1). For each library
ζv ∈ Lup , Watchman analyzes which libraries in the ecosystem
may be directly affected by the update via calling the function
identifyAffectedLibrary (Lines 2–3), which takes ζv , Laf , and G as
input and updates Laf when needed. For each piece of metadata
G(δu) = (D,R, P) in G, if ζ is directly referenced by δu (i.e., ζ ∈ D)
and the version number v satisfies the version constraint Cδu→ζ ,
then δu is possibly affected by ζv and thus added to Laf . Then,
Watchman performs a depth-first search to recursively find more
downstream projects affected by δu and update Laf accordingly.

4.3 Detecting DC Issues

As discussed earlier, the topological structure of a Python project’s
dependency tree determines the installed library versions. In order

Watchman: Monitoring Dependency Conflicts for Python Library Ecosystem ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Updated?
Keep Monitoring

Identify Affected
Downstream Projects

Construct Full
Dependency Graphs

Detecting DC Issues

Predicting DC Issues
YesNo

Figure 4: The overall architecture of Watchman

to diagnose DC issues for each library version ζv ∈ Laf , we need
to analyze the relationships among all library versions that would
be installed by pip to build ζv . To capture such relationships, we
propose a formal model Full Dependency Graph (FDG).

Definition 2 (Full Dependency Graph): The full dependency
graph of a library version ζv , denoted FDG(ζv), is a three-tuple,
(N , E, FR), where
• N = N ′ ∪ {ζv } is the set of nodes in the graph, and N ′ denotes
a set of library versions that pip installs for building ζv . The
libraries here include both direct and transitive dependencies.
• E = {⟨αx , βy ⟩|αx , βy ∈ N } is a set of directed edges, where the
edge from αx to βy represents that the version x of library α
directly depends on library β .
• FR maps each edges e = ⟨αx , βy ⟩ ∈ E to the version constraint
that the library version αx sets on the library β , i.e., Cαx→β .
Note that the FDG of a library version may change overtime

when the library’s upstream projects are updated on PyPI. Algo-
rithm 2 describes the process of constructing the FDG for a li-
brary version ζv . Watchman constructs FDG(ζv) following pip’s
breadth-first installation strategy: pip first installs direct depen-
dencies for a project, and then installs dependencies at the next
level according to the project’s dependency tree, and this process
continues until all dependencies are installed. In the algorithm, we
use a queue named Queue to record the order of traversing and in-
stalling dependencies, and ζv is initially added to the queue. When
visiting each dependency αx in Queue ,Watchman first retrieves
its metadata G(αx) ≡ (D,R, P). It then tries to add each depen-
dency β in D to the FDG. If β has not yet been loaded (or installed),
Watchman determines the version to be loaded based on constraint
Cαx→β (recorded in R) following pip’s installation rules (Line 8).
N andQueue are then updated accordingly (Line 9). If β has already
been added to the FDG,Watchman will retrieve the loaded version
(Line 11). A new edge ⟨αx , βy ⟩ is then added to E (Line 12). The
algorithm uses another queue VisitedEdдes to record the order in
which the edges are traversed (Line 13).Watchman also sets the
version constraint of this edge (Line 14), which can be retrieved
from R. After traversing all dependencies in Queue , the FDG of a
library is completely constructed.

DC Issue Detection. Watchman detects DC issues by analyz-
ing the FDG of each project ζv ∈ Laf in the following steps. First,
Watchman traverses FDG(ζv) and locates those nodes with mul-
tiple incoming edges. A node has multiple incoming edges when
there are multiple projects that directly depend on the library rep-
resented by the node. Next, for each such node αx , Watchman
analyzes the set of its incoming edges, denoted Eα . Note that there is
one edge e in Eα that is traversed first when constructing FDG(ζv).
Suppose that x is the latest version number of the library α that
satisfies the constraint FR(e). To detect DC issues, Watchman
checks x against the set of constraints associated with other edges
in Eα , i.e., {FR(e ′) | e ′ ∈ Eα \{e}}. If x violates any such constraints,
Watchman will report a DC issue to the project ζ .

Algorithm 2: Constructing FDG via Breath-First Search
Input: ζ v and G
Output: FDG(lv) = (N , E , FR)

1 N ← {ζ v }; E ← {}; FR ← {};
2 Queue .add (ζ v); Loaded ← {ζ };V isitedEdдes ← {};
3 while !Queue .isEmpty() do
4 αx ← Queue .pop(); Loaded ← Loaded ∪ {α } ;
5 G(αx) ≡ (D , R, P) ← getMetadata(αx , G) ;
6 foreach β ∈ D do

7 if β < Loaded then

8 βy ← getToLoadVersion(β ,Cαx→β) ;
9 N ← N ∪ {βy };Queue .add (βy);

10 else

11 βy ← getLoadedVersion(β , N) ;

12 E ← E ∪ {⟨αx , βy ⟩ };
13 V isitedEdдes .add (⟨αx , βy ⟩);
14 FR(⟨αx , βy ⟩) ← Cαx→β ;

4.4 Predictive Analysis for DC Issues

The constructed FDGs by Watchman can also enable us to per-
form predictive analysis for proactive prevention of DC issues via
detecting the two types of smells discussed earlier (Findings 3–4).

Type 1: Restricting a dependency to a specific version. If a project
restricts a dependency to a specific version, its downstream projects
may suffer from DC issues. Specifically, DC issues may arise if the
following conditions hold:

(1) There is a version v of project ζ , denoted ζv , that restricts
its direct dependency α to a specific version x .

(2) There is a version y of a downstream project β that depends
on both ζ and α , and ζv and αx are the installed library versions
for βy at the time of analysis.

Let DP be the set of downstream projects (e.g., β) thus found.
The larger |DP | is, the more likely that DC issues can arise. This
is because each project in DP independently sets its own version
constraints onα . If ζv only accepts the version x ofα , the possibility
that the constraint ⟨= x⟩ conflicts with other constraints on α set
by the projects in DP is high, especially when DP is large. In our
experiments, we will warn the developers of the project ζ , if |DP |
is larger than a threshold value, which is set empirically.

Figure 5(a) gives an illustrative example. In project C2.0, the
constraint for library A is restricted to ⟨= 2.0⟩. In addition, C’s
downstream project B5.0 depends on both C2.0 and A2.0. In such
a case, it is very likely that the restrictive constraint C sets on A
would cause conflicts for B (e.g., when A gets updated on PyPI).
The risk of conflicts gets higher if we find more such downstream
projects. Watchman will find such cases and suggest project C’s
developers to relax its constraint on A, to avoid potential DC issues.

Type 2: The installed version of a library is close to the upper

bound specified in the version constraint. If the installed version of a
library satisfies the concerned version constraint but is close to the
upper bound specified in the constraint, build failures may occur
when the library evolves. Watchman deems that a project ζv has
a potential DC issue, if the following conditions hold:

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Wang, Wen, Liu, Wang, Li, Wang, Yu, Cheung, Xu, Zhu

Type 1 Type 2

⟨＞1.0 ∧⩽
2.0⟩

⟨= 1.0⟩

⟨= 2.0⟩
⟨⩽ 3.0⟩

＞1.2 ∧
⩽ 2.0 𝟏 = 1.0 𝟑

⩾ 4.0 𝟒

= 2.0 𝟔

＞2.0 ∧⩽
4.0 𝟓⩽ 4.0 𝟐

Downstream
Project 2

Downstream
Project 3

Downstream
Project 1

𝑪𝟐.𝟎
𝑭𝟏.𝟎

𝑨𝟐.𝟎

𝑩𝟓.𝟎

𝑨𝟐.𝟎 is the latest version of A

𝑸𝟓.𝟎

𝑿𝟐.𝟎
𝒁𝟐.𝟎

𝑷𝟒.𝟎
𝑻𝟒.𝟎

𝑶𝟐.𝟎
𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑬𝒅𝒈𝒆 𝑻𝒓𝒂𝒗𝒆𝒓𝒔𝒆 𝑶𝒓𝒅𝒆𝒓

…
…

(b)(a)

Figure 5: Illustrative examples of potential DC issues

(1) In FDG(ζv) = (N , E, FR), there exists a nodeαu withmultiple
incoming edges, whereα is a dependency of ζv andu is the installed
version of α . Let Eα be the set of incoming edges to αu .

(2) The version constraint of the first traversed edge e in Eα does
not specify an upper bound on α (e.g., the constraint is of the form
⟨≥ y⟩) or the specified upper bound is greater than α ’ latest version
z on PyPI. In this case, any updates of α on PyPI will affect the
version of α to be installed.

(3) There exists another edge e ′ in Eα (e ′ , e), of which the
associated constraint FR(e ′) specifies an upper bound on the version
of α (e.g., the constraint is of the form ⟨≤ x⟩) and the upper bound
is greater than or equal to the latest version of α , i.e., z.

Figure 5(b) gives an illustrative example. In the FDG of project
Q5.0, there are two incoming edges to project T4.0, one from project
X2.0 and the other from project P4.0. Suppose that the former edge
is traversed before the latter. Since the constraint that X2.0 sets on
T has no upper bound, the latest version 4.0 of T will be installed.
There is no dependency conflict at the time of analysis. However,
since the constraint associated with latter edge, i.e., ⟨> 2.0 ∧ ≤ 4.0⟩,
restricts T to a version range, build failures may occur if developers
release a newer version (e.g., 4.1) of T on PyPI.

5 EVALUATION

To evaluate Watchman, we study two research questions:
• RQ3 (Effectiveness): How effective is Watchman in detecting

real DC issues and predicting potential ones?

• RQ4 (Usefulness): Can Watchman monitor DC issues in PyPI
and provide useful diagnostic information to developers?

To answer RQ3, we replayed the evolution history of all libraries
on PyPI from 1 Jan 2017 to 30 Jun 2019. We first constructed a meta-
data repository for PyPI’s snapshot on 1 Jan 2017, and then con-
ducted incremental analysis to extract daily updates of all libraries
until 30 Jun 2019. For each library update, we appliedWatchman
to detect DC issues and predict potential ones via identifying de-
pendency smells. Since we have the whole evolution history, we
could evaluateWatchman’s effectiveness by checking whether the
detected DC issues have been resolved and whether the predicted
ones have indeed evolved into real issues subsequently.

To answer RQ4, we deployed Watchman to monitor PyPI since
1 Jul 2019, and configured it to detect new DC issues of Pattern
A, as well as potential ones that could be induced by the smells
of Type 1 and Type 2. Note that issues of Pattern B can hardly be
detected since they are affected by developers’ local environments,
on which we have no knowledge.

We then consolidated the detected DC issues and submitted
reports to the concerned projects’ issue tracking systems; if: (1) the
detected issues have not been reported or fixed in the unreleased

Table 2: Basic information of experimental subjects

Period 1 Period 2 Period 3 Period 4 Period 5

Projects 1,454 1,535 2,279 2,398 2,673
Releases 11,759 13,202 18,418 18,984 19,746
Commits 530 646 338 740 694

master branches of the projects and (2) the concerned projects have
maintenance records in the last two years (still active). In each issue
report, we pointed out the detected conflicts and explained how
they arose. Such diagnostic information can be easily provided by
Watchman since it simulates the build process of each project. The
report also includes fixing suggestions generated by Watchman
based on our observed common fixing strategies.

5.1 RQ3: Effectiveness

Data collection. A project’s evolution history provides useful in-
formation about how DC issues manifested themselves (and got
fixed). To ease experiments, we divided the whole time period
from 1 Jan 2017 to 30 Jun 2019 into the following five sub-periods:
1 Jan 2017–30 Jun 2017 (Period 1), 1 Jul 2017–31 Dec 2017 (Period 2),
1 Jan 2018–30 Jun 2018 (Period 3), 1 Jul 2018–31 Dec 2018 (Period
4), and 1 Jan 2019–30 Jun 2019 (Period 5). For each sub-period, we
collected open-source Python projects satisfying the following two
criteria as our experimental subjects: (1) having more than five re-
lease versions during this sub-period (active), and (2) having more
than 300 commits during this sub-period (well-maintained). Ta-
ble 2 lists the basic information of these subjects. On average, there
are 16,421 releases of 2,067 projects for each sub-period. We then
appliedWatchman to detect DC issues of Pattern A and predict po-
tential ones that may be induced by smells of Type 1 (Type 1 issues)
and Type 2 (Type 2 issues), during each of the five sub-periods on
a daily basis.

Evaluation metrics. To evaluate Watchman’s effectiveness,
we define two metrics, resolving ratio and lasting time:
• For each detected issue of Pattern A, we checked whether it had
been resolved in the latest version of the project released on
PyPI, up to the date 20 Jul 2019. The metric resolving ratio mea-
sures the proportion of resolved DC issues in those detected by
Watchman. Higher resolving ratios indicate better effectiveness
of Watchman. The metric lasting timemeasures the gap between
the detection time of a DC issue and the resolving time of this
issue. A longer lasting time indicates a wider impact caused by a
DC issue on the concerned downstream projects.
• For the predicted issues, we checked whether they had turned
into real ones. There are two cases: (1) the predicted issue indeed
arose (reported) in history due to library updates, and was fixed
by developers in subsequent project releases; (2) the predicted
issue was not reported in history but developers still fixed it to
avoid certain undesirable consequences. Accordingly, the metric
resolving ratiomeasures the proportion of the predicted DC issues
that belong to either case. The metric lasting time measures the
gap between the time an issue was predicted and the time it was
reported for Case (1), and the gap between the time an issue was
predicted and the time it was resolved by developers for Case (2).
Results. Table 3 presents the experimental results. For all the

five sub-periods,Watchman detected a total of 369 DC issues of Pat-
tern A, and all of them had been fixed by developers (i.e., resolving
ratio = 100%). This strongly suggests that Watchman can precisely

Watchman: Monitoring Dependency Conflicts for Python Library Ecosystem ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 3: Results of DC issues reported by Watchman from 1 Jan

2017 to 30 Jun 2019

Period 1 Period 2 Period 3 Period 4 Period 5 Summary

Pattern A 56 42 84 72 115 369⋆

Fixed 56 42 84 72 115 369⋆

Resolving ratio 100% 100% 100% 100% 100% 100%♮

Lasting time (days) 25.2 27.3 25.0 20.8 31.6 26.0♮

Type 1 10 13 12 11 15 61⋆

Type 2 16 18 19 21 21 95⋆

Case (1) 2 2 3 4 2 13⋆

Case (2) 22 25 26 26 31 130⋆

Resolving ratio 92.3% 87.1% 93.5% 93.8% 91.7% 91.7%♮

Lasting time (days) 101.6 77.1 100.8 51.0 63.9 78.9♮
♮ denotes the average value while ⋆ denotes the sum.

detect DC issues.Watchman also predicted a total of 156 Type 1 and
Type 2 issues, 143 of which had been resolved by developers, result-
ing in an average resolving ratio of 91.7% (= (13+130)/(61+95)). The
resolving ratio of the predicted issues for different periods ranges
from 87.1% to 93.8%, which are generally satisfactory. This suggests
that Watchman is also effective in predicting potential DC issues.
Besides, we observed that all detected 369 DC issues were resolved
by developers within a month (on average, 26 days).Watchman
may help reduce this delay since it can detect DC issues timely (it
performs analysis on a daily basis) and report them to developers
along with fixing suggestions. If developers are able to fix Watch-
man’s detected issues in due course, the side effect of these issues
on downstream projects will be largely diminished.

As at 20 Jul 2019, 13 (8.7%) of the 156 DC issues predicted by
Watchman had not evolved into real ones. By further analyzing
the concerned projects, we found that the dependencies introduc-
ing these issues were no longer active. For instance, in the project
finance-dl [5], Watchman found multiple version constraints
for library idna. When building finance-dl, pip would install
version 2.8 of idna, which is equal to the upper bound of the con-
straint ⟨≥ 2.5∧ ≤ 2.8⟩ introduced by the latest version of the
library selenium-requests. However, this potential DC issue
(Type 2) did not evolve into a real one, since selenium-requests
had stopped its update on PyPI (at our study time).

5.2 RQ4: Usefulness

Watchman detected and predicted a total of 189 DC issues since
we started our online monitoring on 1 Jul 2019. We filtered out
23 issues that had been reported in the corresponding projects’
issue tracking systems and 49 issues whose associated projects had
no maintenance record in the last two years. After filtering, we
reported the remaining 117 DC issues to developers. As shown
in Table 4, 63 issues (53.8%) were confirmed by developers as real
DC issues within a few days. 38 out of the 63 confirmed issues
(60.3%) were quickly fixed, and 25 confirmed issues (38.7%) are
under fixing. The remaining 54 issues are still pending, mainly due
to inactive maintenance of the associated projects. We provide a
detailed analysis in the following.

5.2.1 Feedback on reported issues. For 64 detected issues of
Pattern A, which were caused by library updates,Watchman got
a higher confirmation rate (60.9% = 39/64), which is within our
expectation. For these 39 confirmed DC issues, developers agreed
that the detected conflicts would cause build failures, and invited

us to submit patches to help resolve them. For instance, in issue
report #70 [32] of the project Osmedeus, the developer mentioned
that they had indeed encountered our reported DC issue when
deploying the project, and left a comment “I also get that error when
installing the project but my server works fine. Just submit a PR and I

will review the patch”.
For the 21 predicted DC issues of Type 1, 11 of them have already

been spotted by developers and resolved in the master branches of
the corresponding projects (but not yet released on PyPI) before
we reported them. For instance, the project MycroftAI adapt
relaxed its version constraint on library six from ⟨= 1.10.0⟩ to
⟨≥ 1.10.0⟩ in commit 7eeadeb [1] with a log “to avoid incompati-

bility with downstream projects adapt-parser and jsonschema ”.
Therefore, we reported only the remaining 10 issues of Type 1 to
the developers of the corresponding projects, and 4 of them have
been confirmed by developers. Encouragingly, in the issue report
#182 [12] of the project dynamic-prefer -ences, we got the fol-
lowing comment from developers after they resolved our reported
issue: “It is a hazzle to keep track of all the frozen versions of some

dependencies, especially for larger projects. I think it would be good to

get an automatic notification as maintainer somehow, if one of your

dependencies has locked its own libraries on a specific version.”
For the 43 predicted Type 2 issues, 20 of them have been con-

firmed by developers, although these issues may not cause build
failures immediately. We observed that some of Watchman’s warn-
ings quickly caught developers’ attention, and they added labels
“bug” and “deployment problem” to our issue reports (e.g., [19, 20]).

Among the 63 confirmed DC issues (including both detected
and predicted ones), developers resolved 54 (85.7%) of them follow-
ing our suggested solutions. For example, we reported an issue of
Pattern A.a to the developers of webinfo along with three fixing
solutions (issue #9 [34]). The developer chose the oneWatchman
generated based on Strategy 2 to resolve this conflict. For the re-
maining nine confirmed issues, for which our fixing solutions have
not been adopted by developers, we found that these projects can
be sensitive to certain library updates and our suggested changes
might introduce other side effects, such as vulnerability or compat-
ibility issues (e.g., issue #16 [10] in project kindred).

5.2.2 Feedback on Watchman. Besides confirming our reported
DC issues, some developers expressed interests in our tool Watch-
man. For example, a developer left the following comment in the
pull request #71 [40] of the project arxiv-submission-core:

“A better mechanism of maintaining the dependency constraints

among projects on PyPI like what you did, is much-needed!”
In issue report #492 [30] of the project pywb, we found an en-

couraging comment from an experienced lead developer who is
also the founder of the webrecorder community [4]:

“Are you an ’automation’ written by Github community to help

resolve dependency conflict issues for Python projects? If so, a piece

of nice work! I’d say this is a good approach, a nice friendly bot to

inform of potential dependency issues.”
Such feedback indicates that monitoring library updates and

detecting/predicting dependency conflicts is indeed important to
and welcomed by real-world Python developers. The information
provided by Watchman is also useful to help developers diagnose
DC issues in practice.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Wang, Wen, Liu, Wang, Li, Wang, Yu, Cheung, Xu, Zhu

Table 4: Results of 117 DC issues reported byWatchman from 11 Jul 2019 to 16 Aug 2019

Manifestation Issue reports (Each item gives the issue report ID and the project name)

Pattern A.a

Issue#1, aucome; Issue#110, crypto; Issue#1, OrcaSong; Issue#2, pypmml-spark; Issue#138, toolium; Issue#26, GatewayFramework; Issue#56, Airbnb-data; Issue#2, Runcible;
Issue#95, identification; Issue#96, identification; Issue#1813, tasking-manager; Issue#356, Archery; Issue#325, bocadillo; Issue#21, crema; Issue#4, what-digit-you-write;
Issue#9, webinfo-crawler; Issue#35, zarp; Issue#4, open-helpdesk; Issue#5, languagecrunch; Issue#103, account-creator; Issue#9, jawfish; Issue#212, openpose-plus; Issue#16, kindred;
Issue#13, Generator-GUI; Issue#3, tabular; Issue#5, whats-bot; Issue#65, armory-bot; Issue#39, derrick; Issue#16, Historical-Prices; Issue#688, dxr; Issue#18526, erpnext;
Issue#1, scrapy-qtwebkit; Issue#4778, InstaPy; Issue#2, api-indotel; Issue#145, cert-issuer; Issue#146, django; Issue#4, pymacaron; Issue#1, mgz-db; Issue#1, twitterbots;
Issue#2, gremlin; Issue#17, AWSBucketDump; Issue#198, fabric-cli; Issue#1, BlockCluster; Issue#3, gateway; Issue#2, beauty_image; Issue#1389, Indy-node; Issue#130, swapi;
Issue#279, explorer; Issue#34 footmark; Issue#3, driver-acs; Issue#56, driver-napi; Issue#11, simulator; Issue#9, Friends-Finder; Issue#1, chatbot-template; Issue#545, djangopackages;
Issue#2048, cadasta-platform; Issue#122, adminset; Issue#45, Wallpaper; Issue#21, ltiauthenticator; Issue#28, cryptography;

Pattern A.b Issue#243, bakerydemo; Issue#4, pytools; Issue#70, Osmedeus; Issue#101, aldryn-search;

Type 1

Issue#182, dynamic-preferences; Issue#20, ldapdomaindump; Issue#326, py-cluster; Issue#986, faker; Issue#717, newspaper; Issue#120, mixer; Issue#3, client-python;
Issue#75, PyInquirer; Issue#953, compressor; Issue#26, certstream;

Type 2

Issue#8, AutoCrawler; Issue#31, BBScan; Issue#492, pywb; Issue#8, ct-exposer; Issue#71, EagleEye; Issue#1179, mythril; Issue#1, frida-util; Issue#34, python-urwid;
Issue#4, SecurityManageFramwork; Issue#295, sherlock; Issue#2077, freqtrade; Issue#36, trains; Issue#298, glastopf; Issue#5, Machine-Learning-with-Python; Issue#569, kalliope;
Issue#98, bless; Issue#70, arxiv-submission-core; Issue#2729, plaso; Issue#17, oauth-dropins; Issue#303, ripping-machine; Issue#27, ChannelBreakoutBot; Issue#167, tldextract;
Issue#183, messytables; Issue#9, kuberdock-platform; Issue#42, python-weixin; Issue#25, NoDB; Issue#146, Photon; Issue#911, pyspider; Issue#7, fan; Issue#126, historical;
Issue#49, stephanie-va; Issue#979, subliminal; Issue#56, WPSeku; Issue#3, zhihu-crawler; Issue#38, network-topology; Issue#647, marathon-lb; Issue#9, Konan; Issue#181, JBOPS;
Issue#962, hangoutsbot; Issue#41, GyoiThon; Issue#120, automation-tools; Issue#4, start-vm; Issue#10, ahmia-index;

Status 1 : The issues have already been fixed using our suggested solutions; Status 2 : The issues have already been fixed using other solutions; Status 3 : The issues have been confirmed and are under fixing
using our suggested solutions. Status 4 : The issues have been confirmed and are under fixing using other solutions. Status 5 : The issues are still pending.
We do not present the link of these issues due to page limit. The detailed information of them can be found on our project website (http://www.watchman-pypi.com/buglist).

6 DISCUSSIONS

Threats to validity. Keyword search can introduce irrelevant is-
sues into our dataset. Such noises pose a threat to the validity of our
study results. The errors in our manual analysis of the DC issues
may also affect our study results. To reduce these threats, three
co-authors independently investigated our collected DC issues and
cross-validated their analysis results.
Limitations. Our work has three limitations. First, we focus on
the DC issues that cause build failures. However, in some cases,
dependency conflicts may lead to semantic inconsistencies, runtime
errors, or other consequences in Python projects. Second, the rules
adopted in the predictive analysis can only help find a subset of
all possible DC issues that may be induced by the two types of
dependency smells. The rule set is designed based on our observed
real cases in the empirical study and is not meant to be complete.
Third, Watchman currently is not able to detect all patterns of
DC issues observed in our empirical study. We will address these
limitations in future work.

7 RELATEDWORK

Studies of dependency conflicts. Pradel et al. [52] studied the
dependency conflicts among JavaScript libraries and proposed a
detection strategy. Suzaki et al. [45] conducted an extensive case
study of conflict defects, including conflicts on resource access,
conflicts on configuration data, and interactions between uncom-
mon combinations of packages. Soto-Valero et al. [54] studied the
problem of multiple versions of the same library co-existing in
Maven Central, and presented empirical evidence about how the
immutability of artifacts in Maven Central supports the emer-
gence of natural software diversity. Wang et al. [56] conducted
an empirical study to characterize dependency conflicts in Java
projects and developed Riddle to generate tests to collect crashing
stack traces to facilitate DC issue diagnosis [57]. To the best of our
knowledge, there is no previous work focusing on characterizing
and detecting DC issues in the Python world.
Studies of software ecosystem. Serebrenik et al. [53] performed
a meta-analysis of the difficult tasks in software ecosystem research

and identified six types of challenges, e.g., how to scale the analysis
to a massive amount of data. Mens [50] studied software ecosys-
tem from the socio-technical view on software maintenance and
evolution. Zimmermann et al. [59] studied the security risks in the
npm ecosystem by analyzing data such as dependencies between
packages and publicly reported security issues. Another study by
Lertwittayatrai et al. [48] used network analysis techniques to study
the topology of the JavaScript package ecosystem and extracted
insights about dependencies and their relations. Our work studies
software ecosystem from a novel perspective by taking into account
the interference between the version constraints of upstream and
downstream projects. We also propose a technique to continuously
monitor dependency conflicts for Python projects.

8 CONCLUSION AND FUTUREWORK

In this work, we first conducted an empirical study of 235 real
dependency conflict issues in Python projects to understand the
manifestation patterns and fixing strategies of dependency conflict
issues. Motivated by our empirical findings, we then designed a tech-
nique,Watchman, to continuously monitor dependency conflicts
for the PyPI ecosystem. Evaluation results show thatWatchman
can effectively detect dependency conflict issues with a high preci-
sion and provide useful diagnostic information to help developers
fix the issues. In future, we plan to further improve the detection
capability of Watchman and generalize our technique to other
Python library ecosystems such as Anaconda to make it accessible
to more developer communities.

ACKNOWLEDGMENTS

The authors would like to sincerely thank the anonymous reviewers
of ICSE 2020 for their constructive comments that helped improve
this paper. Part of the work was conducted during the first au-
thor’s internship at HKUST in 2018. This work is supported by the
National Natural Science Foundation of China (grants #61932021,
#61902056, #61802164, #61977014), the Hong Kong RGC/GRF grant
#16211919, MSRA grant, and the Program for University Key Labo-
ratory of Guangdong Province (Grant #2017KSYS008).

Watchman: Monitoring Dependency Conflicts for Python Library Ecosystem ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

REFERENCES

[1] 2020. Commit 7eeadeb of adapt. https://github.com/MycroftAI/adapt/commit/
7eeadeb4744b7e2dd7a9aa61e0350c4e22350eba. (2020). Accessed: 2020-02-06.

[2] 2020. conda. https://conda.io/. (2020). Accessed: 2020-02-06.
[3] 2020. Dependency specification for Python. https://www.python.org/dev/peps/

pep-0508/. (2020). Accessed: 2020-02-06.
[4] 2020. An experienced developer. https://github.com/ikreymer. (2020). Accessed:

2020-02-06.
[5] 2020. finance-dl. https://github.com/jbms/finance-dl. (2020). Accessed: 2020-02-

06.
[6] 2020. Issue #1277 of channels. https://github.com/django/channels/issues/1277.

(2020). Accessed: 2020-02-06.
[7] 2020. Issue #152 of channels. https://github.com/django/

channels_redis/issues/152. (2020). Accessed: 2020-02-06.
[8] 2020. Issue #1525 of molecule. https://github.com/ansible-community/molecule/

issues/1525. (2020). Accessed: 2020-02-06.
[9] 2020. Issue #1586 of crossbar. https://github.com/crossbario/crossbar/issues/1586.

(2020). Accessed: 2020-02-06.
[10] 2020. Issue #16 of kindred. https://github.com/jakelever/kindred/issues/16. (2020).

Accessed: 2020-02-06.
[11] 2020. Issue #1607 of molecule. https://github.com/ansible-community/molecule/

issues/1607. (2020). Accessed: 2020-02-06.
[12] 2020. Issue #182 of dynamic-preferences. https://github.com/EliotBerriot/django-

dynamic-preferences/issues/182. (2020). Accessed: 2020-02-06.
[13] 2020. Issue #1824 of allennlp. https://github.com/allenai/allennlp/issues/1824.

(2020). Accessed: 2020-02-06.
[14] 2020. Issue #2195 of allennlp. https://github.com/allenai/allennlp/issues/2195.

(2020). Accessed: 2020-02-06.
[15] 2020. Issue #229 of gallery-dl. https://github.com/mikf/gallery-dl/issues/229.

(2020). Accessed: 2020-02-06.
[16] 2020. Issue #2483 of allennlp. https://github.com/allenai/allennlp/issues/2483.

(2020). Accessed: 2020-02-06.
[17] 2020. Issue #25316 of pandas. https://github.com/pandas-dev/pandas/issues/

25316. (2020). Accessed: 2020-02-06.
[18] 2020. Issue #25487 of pandas. https://github.com/pandas-dev/pandas/issues/

25487. (2020). Accessed: 2020-02-06.
[19] 2020. Issue #2729 of plaso. https://github.com/log2timeline/plaso/issues/2729.

(2020). Accessed: 2020-02-06.
[20] 2020. Issue #295 of sherlock. https://github.com/sherlock-project/sherlock/

issues/295. (2020). Accessed: 2020-02-06.
[21] 2020. Issue #3118 of pipenv. https://github.com/pypa/pipenv/issues/3118. (2020).

Accessed: 2020-02-06.
[22] 2020. Issue #32 of valinor. https://github.com/ARMmbed/valinor/issues/32.

(2020). Accessed: 2020-02-06.
[23] 2020. Issue #36 of dbxfs. https://github.com/rianhunter/dbxfs/issues/36. (2020).

Accessed: 2020-02-06.
[24] 2020. Issue #3826 of rasa. https://github.com/RasaHQ/rasa/issues/3826. (2020).

Accessed: 2020-02-06.
[25] 2020. Issue #407 of wandb/client. https://github.com/wandb/client/issues/407.

(2020). Accessed: 2020-02-06.
[26] 2020. Issue #409 of bandit. https://github.com/PyCQA/bandit/issues/409. (2020).

Accessed: 2020-02-06.
[27] 2020. Issue #4669 of requests. https://github.com/psf/requests/pull/4669. (2020).

Accessed: 2020-02-06.
[28] 2020. Issue #4674 of requests. https://github.com/psf/requests/pull/4674. (2020).

Accessed: 2020-02-06.
[29] 2020. Issue #4675 of requests. https://github.com/psf/requests/pull/4675. (2020).

Accessed: 2020-02-06.
[30] 2020. Issue #492 of pywb. https://github.com/webrecorder/pywb/issues/492.

(2020). Accessed: 2020-02-06.
[31] 2020. Issue #66 of pythoncoveralls. https://github.com/z4r/pythoncoveralls/

issues/66. (2020). Accessed: 2020-02-06.
[32] 2020. Issue #70 of Osmedeus. https://github.com/j3ssie/Osmedeus/issues/70.

(2020). Accessed: 2020-02-06.
[33] 2020. Issue #740 of yotta. https://github.com/ARMmbed/yotta/issues/740. (2020).

Accessed: 2020-02-06.
[34] 2020. Issue #9 of webinfocrawler. https://github.com/lubosson/webinfocrawler/

issues/9. (2020). Accessed: 2020-02-06.
[35] 2020. Issue #9090 of spyder. https://github.com/spyder-ide/spyder/issues/9090.

(2020). Accessed: 2020-02-06.

[36] 2020. pip. https://pypi.org/project/pip/. (2020). Accessed: 2020-02-06.
[37] 2020. pip documentation. https://pip.pypa.io/en/stable/reference/pip_install.

(2020). Accessed: 2020-02-06.
[38] 2020. pipenv. https://docs.pipenv.org/. (2020). Accessed: 2020-02-06.
[39] 2020. PR #1675 of molecule. https://github.com/ansible-community/molecule/

pull/1675. (2020). Accessed: 2020-02-06.
[40] 2020. PR #71 of arxiv-submission-core. https://github.com/arXiv/arxiv-

submission-core/pull/71. (2020). Accessed: 2020-02-06.
[41] 2020. Project molecule. https://github.com/ansible-community/molecule. (2020).

Accessed: 2020-02-06.
[42] 2020. PyPI. https://pypi.org/. (2020). Accessed: 2020-02-06.
[43] 2020. virtualenv. https://virtualenv.pypa.io/en/latest/. (2020). Accessed: 2020-

02-06.
[44] Pietro Abate and Roberto Di Cosmo. 2011. Predicting upgrade failures using

dependency analysis. In Proceedings of the IEEE 27th International Conference on

Data Engineering Workshops. 145–150.
[45] Cyrille Artho, Kuniyasu Suzaki, Roberto Di Cosmo, Ralf Treinen, and Stefano

Zacchiroli. 2012. Why do software packages conflict?. In Proceedings of the 9th

IEEE Working Conference on Mining Software Repositories (MSR’18). 141–150.
[46] Alexandre Decan, Tom Mens, and Maelick Claes. 2016. On the topology of

package dependency networks: A comparison of three programming language
ecosystems. In Proccedings of the 10th European Conference on Software Architec-

ture Workshops. 21.
[47] Jiajun Hu, Lili Wei, Yepang Liu, Shing-Chi Cheung, and Huaxun Huang. 2018.

A Tale of Two Cities: How WebView Induces Bugs to Android Applications. In
Proceedings of the 2018 33rd ACM/IEEE International Conference on Automated

Software Engineering (ASE’18). 702–713.
[48] Nuttapon Lertwittayatrai, Raula Gaikovina Kula, Saya Onoue, Hideaki Hata,

Arnon Rungsawang, Pattara Leelaprute, and Kenichi Matsumoto. 2017. Extracting
insights from the topology of the javascript package ecosystem. In Proceedings of

the 24th Asia-Pacific Software Engineering Conference (APSEC’17). 298–307.
[49] Yepang Liu, Chang Xu, and Shing-Chi Cheung. 2014. Characterizing and detect-

ing performance bugs for smartphone applications. In Proceedings of the 36th

International Conference on Software Engineering, (ICSE’14). 1013–1024.
[50] Tom Mens. 2016. An ecosystemic and socio-technical view on software mainte-

nance and evolution. In 2016 IEEE International Conference on Software Mainte-

nance and Evolution (ICSME’16). 1–8.
[51] Fabio Nelli. 2015. Python data analytics. Berkeley: Apress (2015).
[52] Jibesh Patra, Pooja N Dixit, and Michael Pradel. 2018. Conflictjs: Finding and

understanding conflicts between javascript libraries. In Proceedings of the 40th

International Conference on Software Engineering (ICSE’18). 741–751.
[53] Alexander Serebrenik and Tom Mens. 2015. Challenges in software ecosystems

research. In Proceedings of the 2015 European Conference on Software Architecture

Workshops. 40.
[54] César Soto-Valero, Amine Benelallam, Nicolas Harrand, Olivier Barais, and Benoit

Baudry. 2019. The Emergence of Software Diversity in Maven Central. In Pro-

ceedings of the 16th IEEE Working Conference on Mining Software Repositories

(MSR’19). 1–11.
[55] Marat Valiev, Bogdan Vasilescu, and James Herbsleb. 2018. Ecosystem-level

determinants of sustained activity in open-source projects: A case study of the
PyPI ecosystem. In Proceedings of the 2018 26th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering (ESEC/FSE’18). 644–655.
[56] Ying Wang, Ming Wen, Zhenwei Liu, Rongxin Wu, Rui Wang, Bo Yang, Hai Yu,

Zhiliang Zhu, and Shing-Chi Cheung. 2018. Do the dependency conflicts in my
project matter?. In Proceedings of the 2018 26th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering (ESEC/FSE’18). 319–330.
[57] Ying Wang, Ming Wen, Rongxin Wu, Zhenwei Liu, Shin Hwei Tan, Zhiliang Zhu,

Hai Yu, and Shing-Chi Cheung. 2019. Could I Have a Stack Trace to Examine the
Dependency Conflict Issue?. In Proceedings of the 41th International Conference

on Software Engineering (ICSE’19). 572–583.
[58] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming Android Fragmenta-

tion: Characterizing and Detecting Compatibility Issues for Android Apps. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software

Engineering, (ASE’16). 226–237.
[59] Markus Zimmermann, Cristianalexandru Staicu, Cam Tenny, and Michael Pradel.

2019. Small World with High Risks: A Study of Security Threats in the npm
Ecosystem. arXiv: Cryptography and Security (2019).

https://github.com/MycroftAI/adapt/commit/7eeadeb4744b7e2dd7a9aa61e0350c4e22350eba
https://github.com/MycroftAI/adapt/commit/7eeadeb4744b7e2dd7a9aa61e0350c4e22350eba
https://conda.io/
https://www.python.org/dev/peps/pep-0508/
https://www.python.org/dev/peps/pep-0508/
https://github.com/ikreymer
https://github.com/jbms/finance-dl
https://github.com/django/channels/issues/1277
https://github.com/django/channels
https://github.com/django/channels
https://github.com/ansible-community/molecule/issues/1525
https://github.com/ansible-community/molecule/issues/1525
https://github.com/crossbario/crossbar/issues/1586
https://github.com/jakelever/kindred/issues/16
https://github.com/ansible-community/molecule/issues/1607
https://github.com/ansible-community/molecule/issues/1607
https://github.com/EliotBerriot/django-dynamic-preferences/issues/182
https://github.com/EliotBerriot/django-dynamic-preferences/issues/182
https://github.com/allenai/allennlp/issues/1824
https://github.com/allenai/allennlp/issues/2195
https://github.com/mikf/gallery-dl/issues/229
https://github.com/allenai/allennlp/issues/2483
https://github.com/pandas-dev/pandas/issues/25316
https://github.com/pandas-dev/pandas/issues/25316
https://github.com/pandas-dev/pandas/issues/25487
https://github.com/pandas-dev/pandas/issues/25487
https://github.com/log2timeline/plaso/issues/2729
https://github.com/sherlock-project/sherlock/issues/295
https://github.com/sherlock-project/sherlock/issues/295
https://github.com/pypa/pipenv/issues/3118
https://github.com/ARMmbed/valinor/issues/32
https://github.com/rianhunter/dbxfs/issues/36
https://github.com/RasaHQ/rasa/issues/3826
https://github.com/wandb/client/issues/407
https://github.com/PyCQA/bandit/issues/409
https://github.com/psf/requests/pull/4669
https://github.com/psf/requests/pull/4674
https://github.com/psf/requests/pull/4675
https://github.com/webrecorder/pywb/issues/492
https://github.com/z4r/pythoncoveralls/issues/66
https://github.com/z4r/pythoncoveralls/issues/66
https://github.com/j3ssie/Osmedeus/issues/70
https://github.com/ARMmbed/yotta/issues/740
https://github.com/lubosson/webinfocrawler/issues/9
https://github.com/lubosson/webinfocrawler/issues/9
https://github.com/spyder-ide/spyder/issues/9090
https://pypi.org/project/pip/
https://pip.pypa.io/en/stable/reference/pip
https://docs.pipenv.org/
https://github.com/ansible-community/molecule/pull/1675
https://github.com/ansible-community/molecule/pull/1675
https://github.com/arXiv/arxiv-submission-core/pull/71
https://github.com/arXiv/arxiv-submission-core/pull/71
https://github.com/ansible-community/molecule
https://pypi.org/
https://virtualenv.pypa.io/en/latest/

