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Abstract—The heavily fragmented Android ecosystem has
induced various compatibility issues in Android apps. The search
space for such fragmentation-induced compatibility issues (FIC
issues) is huge, comprising three dimensions: device models,
Android OS versions, and Android APIs. FIC issues, especially
those arising from device models, evolve quickly with the frequent
release of new device models to the market. As a result, an
automated technique is desired to maintain timely knowledge of
such FIC issues, which are mostly undocumented. In this paper,
we propose such a technique, PIVOT, that automatically learns
API-device correlations of FIC issues from existing Android apps.
PIVOT extracts and prioritizes API-device correlations from a
given corpus of Android apps. We evaluated PIVOT with popular
Android apps on Google Play. Evaluation results show that PIVOT
can effectively prioritize valid API-device correlations for app
corpora collected at different time. Leveraging the knowledge in
the learned API-device correlations, we further conducted a case
study and successfully uncovered ten previously-undetected FIC
issues in open-source Android apps.

Index Terms—Android fragmentation, compatibility, static
analysis, learning

I. INTRODUCTION

The Android market is highly dynamic. To maintain market
competitiveness, Android device vendors keep releasing new
models running customized OS with unique features. As a
result, a lot of device models with different customized OS
versions are available at the same time in the market, making
the Android ecosystem heavily fragmented. Compatibility is-
sues induced by Android fragmentation have been recognized
as a critical challenge in Android app development [38], [42],
[51], [60]. These Fragmentation Induced Compatibility issues
(FIC issues for short) can cause Android apps to exhibit
inconsistent behavior across different devices. FIC issues can
be categorized into two types: non-device-specific ones and
device-specific ones [60]. FIC issues are non-device-specific if
they can be triggered on any device model running a particular
Android version, which is denoted by an integer (e.g., 27 for
Android 8.1) known as an API level. FIC issues are device-
specific if they can only be triggered on certain device models
running particular API levels. Compared with non-device-
specific ones, the search space for device-specific FIC issues is
much enlarged with an additional dimension of device models.
Hence, device-specific FIC issues are more difficult to detect.
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We make two observations on device-specific FIC issues.
First, their search space is large, consisting of three dimen-
sions: device models, API levels and Android APIs. There
are 24,000+ distinct device models running 10+ different
API levels in the market [3], [7]. Each API level supports
thousands of APIs. Detecting such FIC issues by checking if
each combination of device model, API level and invoked API
can induce inconsistent app behaviors is practically infeasible.
Second, the search space is dynamic. It continually evolves
with the release of new device models and API levels. For
example, the number of distinct device models in 2015 was
six times as many as in 2012 [25]. In addition, there have
been two or more API level upgrades each year, which are
commonly customized by Android device manufacturers and
shipped with new device models. Detecting device-specific
FIC issues in such a huge and evolving search space is
challenging. Therefore, developers often realize the existence
of FIC issues only after receiving users’ complaints.

The observations motivate us to study how to automatically
extract the knowledge of FIC issues, which can then be
leveraged to effectively reduce the search space for FIC
issue detection. In this paper, we focus on device-specific
FIC issues. These issues are common but challenging to
resolve [60], [61]. While resources provided by Google (e.g.,
API Guide [2] and emulators) can help developers locate
and patch non-device-specific FIC issues, no similar resources
are provided for device-specific FIC issues. The root causes
of device-specific FIC issues often reside in the proprietary
systems customized by the device vendors. These systems are
typically closed-source with little public documentation.

Several solutions have been proposed to address FIC is-
sues but few of them tackled the problem of extracting the
knowledge of FIC issues to reduce FIC issue search space.
Khalid et al. [42], Lu et al. [51], and Vilkomir et al. [58]
proposed techniques to prioritize the device models for testing
Android apps. However, these prioritization techniques mainly
consider the properties of device models but do not correlate
the device models with FIC issues. Fazzini et al. [34] proposed
DIFFDROID to identify GUI inconsistencies of Android apps
when running on different platforms. DIFFDROID focuses on
the oracle problem, i.e., how to determine the existence of FIC
issues. It does not address the search problem of FIC issues.

In our previous work [60], [61], we found that FIC is-
sues are commonly caused by invoking specific APIs on



specific devices. In other words, FIC issues mostly correlate
issue-inducing APIs with affected device models. Leveraging
this finding, a static analysis technique, FICFINDER, was
proposed to locate callsites of APIs that can induce FIC
issues on affected device models. FICFINDER takes prede-
fined API-device correlations as input for issue detection.
In the previous work [60], [61], the API-device correlations
were manually extracted from an empirical study. However,
this manual approach is impractical because the FIC issue
search space evolves quickly. It requires tremendous efforts to
manually keep track of API-device correlations of FIC issues
that continually arise from new device models. On the other
hand, Li et al. [46] proposed a technique to analyze Android
framework revision histories to learn patterns of FIC issues
caused by Android framework evolution. Their technique
relies on the open-source Android framework code. However,
device-specific FIC issues, the target of this paper, mostly arise
from closed-source systems customized by device vendors.
Without source code, Li et al.’s technique is inapplicable.

In this paper, we propose a technique called PIVOT (API-
DeVice cOrrelaTor) to automatically learn the knowledge of
device-specific FIC issues in terms of API-device correlations
from existing Android apps. In the remaining part of this paper,
we will refer to device-specific FIC issues as FIC issues for
ease of presentation unless specified otherwise. Our insight is
that FIC issues are commonly handled by exercising an alter-
native execution path if the running device matches an issue-
triggering model. In other words, the handling of a FIC issue
usually involves a condition that checks device information
at runtime. An example of such conditions is given in Line
4 of Figure 1, where Nexus 4 is the issue-triggering model
and Lines 4–6 provide an alternative execution path. Based
on this insight, PIVOT extracts API-device correlations such
as 〈Parameters.setRecordingHint(boolean), “Nexus 4”〉 by
identifying the device-checking conditions and the API invo-
cations guarded by them. Such learned knowledge can then be
leveraged to facilitate FIC issue testing or infer rules/patterns
to pinpoint FIC issues in Android apps via static analysis.

PIVOT extracts API-device correlations of FIC issues from
a given Android app corpus and prioritizes the extracted corre-
lations based on their likelihood to capture real FIC issues. An
outstanding challenge is to find valid API-device correlations
from massive noises. In our evaluation, the noises account
for 97% of our sampled API-device correlations extracted
from popular Android app corpora. Existing techniques in
API precondition mining [52], [55], [62], [63] remove noises
based on the assumption that most API usages in code corpora
are correct (i.e., mistakes are rare). However, this assumption
does not hold for APIs that can induce FIC issues due to two
phenomena. First, since FIC issues continuously evolve, lots of
FIC issues, especially the new ones, are likely left undetected
in Android apps. Second, common code clones and library
usages across Android apps can confuse the mining of FIC
issues based on frequency. These cloned code snippets can
be duplicated in many apps [32], [45]. These two phenomena
can introduce noises that greatly affect the learning accuracy

of FIC issues. To address this challenge, we devise a novel
ranking strategy to prioritize extracted API-device correlations
based on the likelihood that the analyzed apps have handled the
corresponding FIC issues and the diversity of the originating
occurrences of API-device correlations.

We implemented PIVOT on Soot [43] and ran it to learn
API-device correlations from two app corpora, each of which
comprises over 2,500 top-ranked apps on Google Play [13]
collected at different time. PIVOT achieved a precision of
100% among the top five ranked API-device correlations and
over 90% precision among the top ten for both of the corpora.
It also successfully identified 49 distinct and valid API-
device correlations capturing 17 different FIC issues among
the top-ranked API-device correlations. We built an archive
accordingly. It comprises the API-device correlations learned
by PIVOT and the corresponding discussions collected from
online resources. The issue archive is publicly available to
Android developers [20] and is expected to grow in future.

To show the usefulness of our learned API-device correla-
tions and the issue archive, we conducted a case study and
encoded the knowledge of the FIC issues learned by PIVOT in
a state-of-the-art FIC issue detection tool to locate undetected
issues in open-source Android apps. We successfully found ten
apps that suffer from these FIC issues. We further reproduced
and reported our detected issues to the app developers. So far,
seven reported issues have been acknowledged, among which
four issues have been quickly fixed. This demonstrates that
the API-device correlations learned by PIVOT can be used to
facilitate FIC issue detection for Android apps. To summarize,
we make three major contributions in this paper:

• We proposed and implemented the first technique to learn
API-device correlations from existing Android apps and
showed that such API-device correlations can be used to
facilitate FIC issue detection for Android apps.

• We devised a new ranking strategy that can effectively
identify valid API-device correlations capturing real FIC
issues. Our evaluation results show that this strategy can
significantly outperform traditional ones.

• We archived the FIC issues identified by PIVOT. With the
archive, we conducted a case study and successfully revealed
previously-unknown FIC issues in ten Android apps, many
of which were confirmed or fixed by the app developers.

II. PROBLEM FORMULATION & MOTIVATION

A. FIC Issue Pattern & API-Device Correlations

The FICFINDER work [60], [61] found that FIC issues
demonstrate patterns: they often arise when certain APIs are
invoked on certain device models. We observed that although
FICFINDER successfully detected previously-unknown FIC is-
sues, its major limitation is that the patterns used for FIC issue
detection were manually extracted from an empirical study. As
the Android ecosystem evolves, the applicability of these once
effective issue patterns gradually diminishes. For example,
among the 25 issue patterns used by FICFINDER [60], 12 are



now outdated because the device models that can trigger the
issues have faded out from the market.

This inspires us to develop a sustainable mechanism to keep
the knowledge of FIC issues updated with respect to the evolu-
tion of Android ecosystem. We note that companies of popular
commercial apps are likely to notice and patch FIC issues in
their apps early once new issues emerge because of their large
user base and rich maintenance resources. We therefore pro-
pose to learn API-device correlations from these high quality
commercial Android apps to maintain a knowledge base of
FIC issues. The learning leverages an observation that FIC
issues are mostly patched by applying workarounds on specific
device models [60], [61]. These workarounds often comprise
a conditional statement that checks the runtime device infor-
mation (e.g., the device model identifier) against predefined
values (mostly constants). The runtime device information
can be obtained by querying the android.os.Build class
provided by the Android SDK. Such conditional statements
characterize the existence of code snippets that handle FIC
issues. For illustration, we show a code snippet that handles a
low frame rate issue in camera preview on Nexus 4 in Figure 1.
When invoking the camera API on Nexus 4 to take photos,
the default frame rate for photo preview is low (6–10 frames
per second), making the preview choppy. The patch applies a
workaround specifically for Nexus 4 by setting the recording
mode hint to true. At Line 4, the code checks the app’s runtime
environment. If the device model is Nexus 4, the workaround
is applied (Lines 4–6). From this example, we observe that the
conditional statement (Line 4) encapsulates the information of
the device model (Nexus 4) that can trigger the FIC issue.
The API call (Line 5) that is dependent on the conditional
statement demonstrates a strong correlation with the FIC issue.
By identifying such conditional statements and API calls that
are dependent on the conditions, we can recover API-device
correlations to characterize FIC issues.

To learn API-device correlations, PIVOT formulates each
correlation as a pair of an API and an identifier for a device
model (device identifier for short). In this paper, we focus on
learning API-device correlations for Android SDK APIs rather
than APIs of third-party libraries. The device identifier of a
correlation describes an issue-triggering device model such
as the name of the model or the manufacturer. In Figure 1,
the API setRecordingHint depends on a conditional
statement that checks the device identifier against “Nexus 4”.
In such a case, PIVOT will derive an API-device correlation:
〈Parameters.setRecordingHint(boolean), “Nexus 4”〉. Note
that PIVOT does not assume that the APIs in API-device
correlations are issue-inducing. They can also be issue-fixing
ones such as the setRecordingHint in our example.

Currently, PIVOT does not include API levels in the ex-
tracted API-device correlations. This is because we found that
it is uncommon (16.7%) to check both device models and API
levels in the code snippets that handle FIC issues according to
a previously published FIC issue dataset [60]. The underlying
reason may be that many devices’ operating system rarely
gets major updates after the devices are shipped. As a result,
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9.

Camera mCamera = Camera.open();
Camera.Parameters params = mCamera.getParameters();
…
if (Build.MODEL.equals(“Nexus 4”) {

params.setRecordingHint(true);
}
…
mCamera.setParameters(params);
mCamera.startPreview();

Fig. 1. Patch for Camera Preview Frame Rate Issue on Nexus 4

most FIC issues can be patched without checking API levels.
Therefore, we include only the information of APIs and device
models in our API-device correlations.

B. Application Scenarios of API-Device Correlations

API-device correlations can help reduce the search space
of FIC issues and save testing efforts. For example, the
API-device correlation extracted from Figure 1 suggests the
existence of a FIC issue when using the camera of a Nexus
4. With such information, developers can focus on testing the
app components that use cameras on Nexus 4. This can help
trigger the FIC issue quickly. Otherwise, triggering the issue
would require developers to extensively test their apps on a
huge number of different devices. Let us analyze the reduction
of testing efforts. Assume that developers carefully test their
apps using Amazon Device Farm [8], a widely-used online
testing platform providing over 200 device models including
Nexus 4. According to an existing study [50], a popular
Android app contains 50 entry methods on average. Then, app
developers may need to test 10,000 (200 × 50) combinations
of entry methods and device models to trigger the issue. Such
testing efforts are unaffordable for most development teams.
As a result, FIC issues would likely be left undetected in the
released apps. Comparatively, knowing the correlation between
Android camera APIs and Nexus 4, developers can focus on
testing a few entry methods that involve camera APIs on Nexus
4 to expose potential FIC issues before releasing their apps.

API-device correlations can also be analyzed to derive rules
to automate FIC issue detection and patching. Let us consider
the example in Figure 2 again. From the API-device correla-
tion 〈Parameters.setRecordingHint(boolean), “Nexus 4”〉,
we can infer that Android camera APIs may induce FIC
issues on “Nexus 4”. We can also infer that a possible
patch is to invoke setRecordingHint and set the flag to
true. We can further validate the observations by checking
relevant resources online. For example, by a search on Google,
we can find concrete evidence (e.g., [6], [14]) showing that
camera APIs indeed can cause FIC issues on Nexus 4. Via
such analyses, we can build a knowledge base of FIC issues
containing their patterns and high-quality patches. The issue
patterns can be used as inputs to compatibility analysis tools
such as FICFINDER [60]. The issue patches can serve as
templates to help fix FIC issues and support future research on
automatically repairing FIC issues. To show the feasibility of
this application scenario, in our evaluation (Section IV-B), we
derived five FIC issue patterns based on learned API-device



public boolean onKeyUp(int keyCode, KeyEvent event) {
if ((keyCode == KeyEvent.KEYCODE_MENU) &&

isLGE()) {
Log.i(TAG, "Applying LG workaround");
openOptionsMenu();
return true;

}
//App-specific code cloned from VLC
View v = getCurrentFocus();
…
return super.onKeyUp(keyCode, event);

}
public boolean isLGE() {

return Build.MANUFACTURER.compareTo("LGE") == 0;
}
protected void onCreate (Bundle savedInstanceState) {

Log.i(TAG, "Activity created");
…

}

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
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15.
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19.

Fig. 2. Patch for A Crashing FIC Issue on Some LG devices

correlations. With these issue patterns, FICFINDER detected
ten previously-unknown FIC issues in popular open-source
Android apps. For instance, with the Nexus 4 camera issue
pattern, FICFINDER detected three new issues. The developers
also quickly fixed these three issues according to our suggested
patch (i.e., invoking setRecordingHint).

C. Motivating Example & Overview

Options menu crash issue on LG devices. Figure 2
shows a code snippet handling an infamous crashing FIC issue
triggered by pressing the physical menu button on some LG
devices if the corresponding options menu is customized. The
LG’s solution (Lines 2–7) helps avoid app crashes by explicitly
opening the options menu (Line 5) rather than calling the
onKeyUp() method of the super class. With the example,
we now illustrate the major steps and challenges in learning
valid API-device correlations from an Android app corpus.

Step 1: Extracting API-device correlations. API-device
correlations can be extracted by identifying the conditional
statements that check device information and the APIs guarded
by these statements. We call these statements device-checking
statements. A device-checking statement and its guarded API
calls may reside in different methods. As shown in Figure 2,
the device-checking statement resides in the method isLGE()
(Line 14), while its guarded API call openOptionsMenu()
resides in the method onKeyUp() (Line 5). Therefore,
extracting API-device correlations requires inter-procedural
analysis. To capture these correlations, PIVOT first builds
an inter-procedural control flow graph for an Android app
and then traverses the graph to identify the device-checking
statements as well as the API calls depending on them.

Step 2: Filtering noises. API-device correlations extracted
in the first step contain massive noises because APIs that are ir-
relevant to FIC issues may also be guarded by device-checking
statements as part of app-specific logic. For example, the API
Log.i() is invoked when the condition “MANUFACTURER
equals ‘LGE’ ” is satisfied. The API is called for profiling
purpose but the inter-procedural analysis in the first step would
generate a noisy API-device correlation, 〈Log .i(), “LGE”〉,
which is unrelated to any FIC issues. According to our

experiments (Section IV), 97% of our sampled API-device
correlations generated by the first step are noises.

Filtering such massive noises is a major challenge in learn-
ing valid API-device correlations from Android apps. Existing
API usage mining techniques [52], [55] cannot effectively help
filter such noises due to two reasons. We explain the reasons
and present the intuitions of PIVOT’s solution below.

Huge and evolving FIC issue search space. The existing
API usage mining techniques assume that the majority of API
usages are correct and adopt conventional statistical metrics
(i.e., confidence or support). However, this assumption may
not hold for API-device correlation learning. Since the search
space of FIC issues is huge and evolving, in practice, FIC
issues are commonly left unhandled in released apps. As such,
many valid API-device correlations, especially those related to
new FIC issues, are not subject to high confidence or support.

We observe that the confidence of an API-device correlation
within an app helps distinguish valid and noisy correlations.
The intuition is that within the same app: (1) The APIs irrel-
evant to FIC issues can be invoked at various places without
device-checking statements. (2) Callsites of APIs related to
the same FIC issues are often guarded by device-checking
statements. Figure 2 contains an example: the irrelevant API
Log.i() invoked at Line 4, which is guarded by a device-
checking statement, is also invoked in another method of the
app without any device-checking statements (Line 17). This
observation helps distinguish APIs that are relevant to FIC
issues from irrelevant ones. Therefore, we propose a metric, in-
app-confidence, that computes how often an API’s invocation
is guarded by a specific device-checking statement in an app.
As illustrated, this metric helps identify irrelevant APIs that
are also often invoked without checking device information.

Code clones in Android apps. Simply ranking API-
device correlations by in-app-confidence and the frequency of
an correlation’s occurrences is insufficient because of code
clones, which are common in Android apps [32]. Due to
code clones, noisy API-device correlations in cloned code
snippets can recur in different apps. This increases the noises
and makes the valid API-device correlations indistinguish-
able. For example, Lines 9–10 in Figure 2 are app-specific
code, which are unrelated to FIC issues. Line 9 invokes the
API Activity.getCurrentFocus() to get the currently
focused view. This line and the code denoted by “...” in
Line 10 are cloned from a popular open-source video player,
VLC [26]. In our evaluation, we observed that instances of
noisy API-device correlations extracted from this cloned code
snippet recurred in many apps in our collected app corpora.
To mitigate this problem, our ranking strategy also considers
the diversity of the occurrences of the extracted API-device
correlations. More details of our approach will be presented
in the next section.

III. PIVOT APPROACH

As shown in Figure 3, PIVOT takes a corpus of Android
apps as input and outputs a ranked list of API-device correla-
tions. The process consists of two steps. First, the correlation
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Fig. 3. Overview of PIVOT

keyCode == 
KEYCODE_MENU

call isLGE();

isLGE():
return

MANUFACTURER.compareTo("LGE")==0;

b1 = isLGE();

b1 == true

Log.i(TAG, “Applying LG …");
openOptionsMenu();
return true;

View v = getCurrentFocus();
…
return
super.onKeyUp(keyCode, event);

(1)

(2)

(3)

(4)

(5)

(6) (7)

MANUFACTURER equals “LGE”

MANUFACTURER equals “LGE”

Fig. 4. Inter-Procedural Control Flow Graph of the Code in Figure 2

extractor performs static analysis to extract raw API-device
correlations from the input apps. Then the correlation priori-
tizer ranks the extracted API-device correlations.

A. Extracting API-Device Correlations

The correlation extractor performs inter-procedural static
analysis on an input app in three steps:

Building inter-procedural control flow graphs. For each
input app, the correlation extractor builds an inter-procedural
control flow graph by combining the app’s call graph and
each method’s control flow graph. Figure 4 shows the inter-
procedural control flow graph for the code snippet in Figure 2.
For ease of presentation, we label each block in the graph with
a unique number. Note that Android apps are event-driven.
When building inter-procedural control flow graphs, PIVOT
does not consider the implicit control flow between different
event handlers. As reported in a prior study, it is unlikely that
FIC issue patches would cross event handlers [60]. This means
that the pieces of code by which an API-device correlation is
learned likely reside in the same event handler or its callees.
As a result, eliminating control flows between event handlers
may not significantly affect API-device correlation extraction.

Identifying device-checking statements. The correlation
extractor then traverses the inter-procedural control flow graph
to identify device-checking statements and evaluates the condi-
tions imposed on each branch. Since device information is en-
capsulated by the class android.os.Build, a conditional
statement is considered device-checking if it uses this class.
In Figure 4, block 3 contains such a conditional statement (the
block is in the method isLGE()).

Computing device constraints for program blocks and
deriving API-device correlations. The correlation extractor
then computes the device-related constraints induced by the

conditions that should be satisfied to reach each program
block. For ease of presentation, we refer to these constraints
as device constraints. The device constraint for each block is
the disjunction of the device constraints of all paths by which
the block can be reached from the application entry points.
As discussed, the pieces of code by which an API-device
correlation is learned likely reside in the same event handler or
its callees. Therefore, PIVOT considers each event handler to
be an entry point. Finally, all APIs called in a block are paired
with the device identifiers in the device constraint of this block
to produce API-device correlations. In Figure 4, the method
onKeyUp() is an event handler defined in the Activity
class, and is therefore treated as an entry point for our static
analysis. Since there is only one path (1–2–3–4–5–6) reaching
block 6 from the entry point, the device constraint is computed
as the conjunction of the device constraints associated with the
edges on this path (i.e., MANUFACTURER equals “LGE”). By
pairing up the APIs called in block 6 and the identifier in the
device constraint, two API-device correlations are produced:
〈Log .i(), “LGE”〉,〈Activity .openOptionsMenu(), “LGE”〉.

B. Prioritizing API-Device Correlations

In this step, the API-device correlations extracted in the first
step are prioritized based on their likelihood of capturing real
FIC issues. As discussed in Section II-C, existing techniques
cannot effectively filter invalid API-device correlations. To
prioritize API-device correlations, we propose a new approach
that leverages two metrics: in-app confidence and occurrence
diversity. The two metrics are inspired by our observations
discussed in Section II-C.

1) In-App Confidence: New FIC issues continually arise
with the release of new device models and the evolution
of Android platforms. These issues may not be commonly
and quickly fixed in real-world Android apps. Therefore, the
conventional metric confidence, which is based on an API-
device correlation’s popularity over the whole app corpus,
cannot effectively prioritize API-device correlations. On the
other hand, although FIC issues may not be commonly fixed,
we observed that once developers of an app identify a real FIC
issue, they tend to modify all callsites of the issue-inducing
API within the app to fix the issue. The callsites of APIs
irrelevant to FIC issues are mostly not guarded by any device
constraints. As such, we propose to use in-app confidence
(IAC) to prioritize API-device correlations. The IAC of an
API-device correlation c in an app A is defined as:

IAC (A, c) =
# occurrences of c in A

# callsites of c.api in A
(1)

where c.api is the API of c. Intuitively, IAC computes how
often the invocation of c.api is guarded by a device-checking
statement that checks the app’s runtime device model against
the device model captured in c.

The total in-app confidence metric wIAC (c) for an API-
device correlation c is the sum of IACs of all apps in the
corpus that contain the API-device correlation:

wIAC (c) =
∑

IAC (A, c) (2)



2) Occurrence Diversity: Intuitively, if an API-device cor-
relation recurs in more apps, it is more likely to be valid.
However, prioritization of API-device correlations based on
their number of occurrences alone can be insufficient. Since
code clones are common in Android apps, the API-device
correlations extracted from cloned code can appear in many
apps and get a high rank even if they have nothing to do with
FIC issues (see Section II-C for an example). To mitigate this
problem, we propose a new metric occurrence diversity to
measure the diversity of the apps and methods, within which
the instances of an API-device correlation c are found. We
denote it as d(c).

We leverage Shannon index [56] to measure occurrence
diversity. Shannon index was proposed to measure the diversity
of the characters in a string and was later widely applied in
ecology to measure the species diversity [31], [57]. Shannon
index is computed based on the distribution of different groups
of entities in a population and is defined as follows:

H = −
∑n

i=1
pi log pi (3)

where pi is the proportional abundance of the i-th group in
a population. Intuitively, Shannon index is higher if there is
a larger number of different groups in the population and the
groups of entities are more evenly distributed. Using Shannon
Index, we measure an API-device correlation c’s occurrence
diversity at two levels: app-level and method-level.

App-level diversity measures the diversity of the apps that
contain the instances of c. We use app names and app company
names, which can be extracted from app markets, as identifiers
to distinguish different groups of apps.

Method-level diversity measures the diversity of methods
that contain the API callsites in c’s instances. We use package
names of the methods’ enclosing classes and method con-
trol flow structures to distinguish different methods. Package
names can be extracted by static analysis but are subject to
code obfuscation. To cope with obfuscation, we also measure
the diversity of control flow structures using an existing
technique [32] that detects code clones in Android apps by
projecting the control flow structure of each method to a
three-dimensional centroid and calculating distances between
these centroids. This technique has been shown to be accurate
and scalable. Since it is based on the control flow structures
of methods, the technique is robust to code obfuscation. To
calculate the control flow structure diversity, we first calcu-
late centroids for all methods that contain the API callsites
in c’s instances. Then the methods are clustered based on
the centroids according to the single-linkage clustering al-
gorithm [36]. Specifically, a method is added to an existing
cluster if the distance between its centroid and the centroid
of any method in this cluster is smaller than a threshold θ,
which is set to 0.05 in our experiment. The output clusters are
considered as different control flow structure groups.

After grouping API-device correlation occurrences, we ap-
ply Shannon index to calculate the diversity of app name
(Happ), app company name (Hcompany ), method package
name (Hpackage), and method centroid (Hcentroid ). The overall

occurrence diversity of an API-device correlation c is then
calculated as follows:

d(c) = log(1 + Happ(c)×Hcompany(c)

×Hpackage(c)×Hcentroid(c))
(4)

3) Ranking Score: The ranking score of an API-device cor-
relation c is then calculated by combining the above metrics:

S (c) = wIAC (c)× d(c) (5)

The extracted API-device correlations are ranked based on
their ranking scores. If the ranking score of an API-device
correlation is higher, it is more likely to capture FIC issues.

IV. EVALUATION

We implemented PIVOT on top of Soot [43]. To evaluate the
effectiveness of PIVOT and the usefulness of its learned API-
device correlations, we study the following research questions:
• RQ1 (Effectiveness of PIVOT) Can PIVOT effectively iden-

tify valid API-device correlations of real FIC issues from
popular Android apps? Can our proposed ranking score
outperform the metrics adopted by existing API precondition
mining techniques?

• RQ2 (Usefulness of API-device correlations) Can the API-
device correlations learned from popular apps facilitate FIC
issue detection in other apps?

To investigate the RQs, we conducted two experiments:
• Experiment I: To answer RQ1, we ran PIVOT on popular

apps collected from Google Play and evaluated the precision
of its learned API-device correlations. We compared the
results with a baseline approach that adopts the ranking
metric of a representative API precondition mining tech-
nique proposed by Nguyen et al. [52]. Since FIC issues
evolve quickly, we ran PIVOT on two different app corpora
collected in 2017 and 2018 and compared the results to
evaluate whether PIVOT can effectively identify valid API-
device correlations from popular apps at different time.

• Experiment II: To answer RQ2, we conducted a case study.
We leveraged the API-device correlations learned by PIVOT
in the first experiment to detect FIC issues in open-source
Android apps and reproduced the detected issues.

The experiments were conducted on a Linux server running
CentOS 7.4 with two Intel Xeon E5-2450 Octa Core CPU
@2.1GHz and 192 GB RAM.

A. RQ1: Effectiveness of PIVOT

1) Experiment I Setup: In this experiment, we evaluate the
effectiveness of PIVOT to prioritize valid API-device correla-
tions. In the following, we discuss the data collection process,
baseline approach, ground truth, and evaluation metrics.

Data collection. To evaluate whether PIVOT can identify
FIC issues that are active at different time, we applied it to
two app corpora collected in 2017 and 2018, respectively. To
prepare the two corpora, we crawled the APK files of the top
100 free apps for each category on Google Play in November
2017 and June 2018. The first collection contains 2,694 apps



TABLE I
STATISTICS OF OUR APP CORPORA

Corpus 2017 Corpus 2018

# Apps 2,524 2,765

Total # classes 14,297,551 20,023,102
Total # methods 112,181,748 108,861,735

Average rating 4.1 4.1
Average # downloads 16,000,000+ 14,000,000+

and we were able to run PIVOT on 2,524 of them. The second
collection contains 3,054 apps and we were able to run PIVOT
on 2,765 of them. Soot crashed when analyzing the remaining
apps. The number of apps collected is not in hundreds because
some APK files cannot be downloaded due to server errors.
The analyzable apps formed our two app corpora. We will
call them Corpus 2017 and Corpus 2018 hereinafter. The two
app corpora slightly overlap: 853 apps are in both corpora but
the app versions are different. We analyzed the APK files of
the apps in the two corpora and collected the apps’ meta data
from Google Play [13]. Table I shows the statistics. As shown
in the table, the two app corpora both have tens of millions of
classes and over one hundred million methods. The apps are
also of high quality and popular. The average rating is 4.1 out
of 5. On average, each app received over 16 and 14 million
downloads in Corpus 2017 and Corpus 2018, respectively.

Baseline approach. We compared PIVOT with a baseline
approach adapted from a state-of-the-art API precondition
mining technique by Nguyen et al. [52]. The technique learns
API preconditions that involve API receivers and parame-
ters. It originally does not support extracting device-related
preconditions. To adapt the technique to learn valid API-
device correlations, we integrated our Correlation Extractor
(Section III-A) with the technique’s filtering and ranking
components. Specifically, the API-device correlations were
first filtered by their support. Those API-device correlations
that only occurred once in a corpus were filtered out. The
API-device correlations were then ranked by the multiplication
of method-level confidence and project-level (i.e., app-level)
confidence. App-level confidence of an API-device correlation
c is computed as the ratio of the apps that contain c’s instances
to the apps that contain callsites of c’s API. Similarly, method-
level confidence of an API-device correlation c is the ratio of
the methods containing callsites of c’s API that are guarded
by statements checking the device identifier modeled in c to
the methods that contain the callsites of c’s API.

Ground truth: valid API-device correlations. We consider
an API-device correlation c valid if calling the API in c can
trigger or fix FIC issues on the corresponding device model.
To establish the ground truth, we manually inspected top 50
API-device correlations of each ranked list produced by PIVOT
and the baseline approach. We also randomly sampled 50 API-
device correlations from the unranked API-device correlations
extracted by Correlation Extractor to show the massiveness of
noises. We only manually validated top 50 API-device corre-
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lations because without an automated approach, it is unlikely
for users to check a large number of API-device correlations
produced by PIVOT or the baseline approach. When validating
each API-device correlation, we first inspected the originating
location of its instances and determined whether the API
callsites are dependent on some statements checking the device
identifier in the correlation. If yes, we proceeded to use the API
signature, the name of API’s enclosing class, and the device
identifier as keywords to search on Google [12], GitHub [11],
and Stack Overflow [23]. An API-device correlation c is then
considered valid only if we can find multiple sources (e.g.,
forum discussions or issue reports) confirming that (1) the API
of c can induce inconsistent app behavior on the device model
specified in c, or (2) the API can be used to address the FIC
issues that can be triggered on the device model. Recall the
example in Figure 2, the patch suggested by LG developers
was to explicitly invoke an API to open the options menu
(Line 5) [16], [24]. As a result, the API-device correlation
〈Activity .openOptionsMenu(), “LGE”〉 is considered valid.
We published the valid API-device correlations and the corre-
sponding online discussions at our project website [20].

Evaluation metric. To measure the effectiveness of PIVOT
and the baseline approach in prioritizing API-device correla-
tions, we adopt the metric Precision@N, which reports the
percentage of valid API-device correlations among the top N
API-device correlations in a ranked list. Higher Precision@N
indicates that the ranking strategy is more effective.

2) Results of Experiment I: PIVOT extracted 32,047 and
24,355 API-device correlations from Corpus 2017 and Corpus
2018, respectively. To evaluate the effectiveness of PIVOT, we
(1) randomly sampled 50 API-device correlations extracted
from each app corpus to show the massiveness of noises, (2)
evaluated Precision@N (N = 1, 2, 3, . . ., 50) for top 50 API-
device correlations in each ranked list, (3) compared the results
of PIVOT for the two different app corpora, and (4) compared
the results of PIVOT and that of the baseline approach.

Massiveness of noises. From the 100 randomly-sampled
API-device correlations (50 for each app corpus), we only
identified three valid ones that capture real FIC issues. None
of these three valid API-device correlations was ranked to top
50 by PIVOT because they either only occurred once in one
app or occurred only in cloned code snippets. This shows that
noises are massive in the API-device correlations extracted
from the app corpora (approximately 97%). Identifying valid
API-device correlations is an outstanding challenge.



Precision@N of PIVOT. Figure 5 plots the results of
Experiment I. The two solid lines show the results of PIVOT
for the two app corpora. In both corpora, PIVOT achieves 100%
precision among the top five API-device correlations and over
90% precision among the top ten. The precision gradually
drops as N grows. This shows that PIVOT can effectively
prioritize valid API-device correlations. PIVOT identified 29
valid API-device correlations among the top 50 (58% preci-
sion@50) for Corpus 2017 and 28 valid ones among the top 50
for Corpus 2018 (56% precision@50). Among these 29 and 28
valid correlations, eight are overlapped.This means that PIVOT
identified a total of 49 distinct valid API-device correlations.

We further studied why PIVOT ranked some invalid API-
device correlations among top 50. We identified two major
reasons. First, some APIs are commonly used in different
apps for specific purposes irrelevant to FIC issues. One typical
example is the logging APIs that are widely used for run-
time information collection. API-device correlations involving
such APIs may receive a high ranking score because the
occurrence diversity of such API-device correlations could be
high. Second, most other invalid API-device correlations were
ranked high due to the limitations of existing constraint solvers
and simplifiers. When deriving device constraints for program
blocks, we leveraged a popular constraint solver, Choco [53],
and a rule-based constraint simplifier, Jbool Expressions [15],
to simplify the device constraints. As Boolean Expression
minimization is an NP-hard problem [39], our simplified
device constraints may not be minimal. Thus, API calls that
are not made under any device constraints could be mistakenly
included and paired with device constraints.

Comparison between the results of the two corpora. As
shown in Figure 5, PIVOT achieved similar precision@N for
the two app corpora collected at different time. The valid API-
device correlations among top 50 for Corpus 2017 and Corpus
2018 only slightly overlap as discussed above. This shows that
PIVOT can learn valid API-device correlations from corpora of
popular apps at different time.

Comparison with baseline. The two dashed lines in Fig-
ure 5 show the results of the baseline approach. PIVOT sig-
nificantly outperforms the baseline approach. The baseline ap-
proach failed to rank any valid API-device correlations to top
50 for Corpus 2017 and only identified one valid correlation at
the 14th position for Corpus 2018. We further studied why the
baseline approach performed poorly. We found that most of its
top-ranked API-device correlations involve rarely-used APIs.
For example, the top 13 API-device correlations produced by
the baseline approach for Corpus 2018 received 1.0 confidence
yet none of them are valid. This shows that learning API-
device correlations differs from mining API preconditions.
General API precondition mining techniques cannot effectively
identify valid API-device correlations.

B. RQ2: Usefulness of API-Device Correlations

1) Experiment II Setup: We built an archive of 17 distinct
FIC issues based on the 49 valid API-device correlations
learned by PIVOT. There are fewer distinct FIC issues than

API-device correlations because multiple API-device corre-
lations could refer to the same FIC issue. For example, an
API that triggers an FIC issue and another API that addresses
this FIC issue can result in two valid API-device correlations
according to our approach. For each issue, our archive pro-
vides: (1) the API-device correlations of the issue learned by
PIVOT, (2) the package IDs of the apps from which PIVOT
learned these correlations, and (3) the related issue discussions
we collected from online resources to validate the API-device
correlations. This archive is also publicly available [20].

To investigate the usefulness of the learned API-device cor-
relations, we conducted a case study on open-source Android
apps. In the study, we leveraged FICFINDER [60], a static
analyzer that detects FIC issues in Android apps, to detect and
reproduce undiscovered instances of our archived FIC issues.

Issue selection. From our archive, we selected five FIC
issues to carry out the case study. We provide videos to
demonstrate the inconsistent app behaviors caused by these
issues on our project website [20]. We selected these five
issues because: (1) the device models that can trigger the issues
are available on Amazon Device Farm [1] or WeTest [28] and
(2) the inconsistent app behaviors caused by the issues are
observable on the online testing platforms. The first criterion
enables us to reproduce the later detected FIC issues on online
testing platforms. The second criterion allows us to have a
clear oracle to determine the occurrence of FIC issues.

App selection. To find undiscovered instances of the five
FIC issues in real-world Android apps, we collected the latest
version of 44 apps on F-Droid [9]. All these 44 apps (1) have
at least 50 stars on GitHub [11], (2) have over 500 commits,
(3) have at least one push during a five-month period before
the case study, and (4) contain at least one callsite of any
API related to the five FIC issues. These criteria ensure that
our selected apps (1) are popular and well-maintained and (2)
could be liable to the selected FIC issues. Note that although
the apps are open-source, some of them are also popular on
Google Play. For example, Barcode Scanner has received over
100 million downloads on Google Play (Table II).

Issue detection and reproduction. For each of the selected
issues, we encoded it as a rule in FICFINDER’s API-Context
Pair format. We then ran FICFINDER using these rules as input
to analyze the 44 app subjects. FICFINDER reported warnings
for 35 of these subjects. We manually inspected these 35 apps
and excluded those that require special hardware/software en-
vironments to run (e.g., specific server setups) from this study.
As a result, we focused on reproducing 19 detected issues in
19 apps using Amazon Device Farm [1] and WeTest [28].

2) Usefulness of API-Device Correlations: Among the 19
detected issues, we successfully reproduced ten in ten different
apps. We failed to reproduce the remaining nine due to three
major reasons. First, some apps did not exhibit inconsistent
behavior as they only use the minor functionalities of the
issue-inducing APIs. For example, some apps use the Camera
API to turn on the flash light to use the phone as a torch.
In such cases, the camera preview was not displayed and
the issues cannot be observed. Second, FICFINDER generated



TABLE II
CASE STUDY SUBJECTS AND REPORTED ISSUES

ID App Name Category Latest
Revision No.

KLOC # Stars Rating # Downloads Issue ID(s)

1 Barcode Scanner [4] Shopping c8da0c1 43.2 16,152 4.1 100M+ 959b

2 NewsBlur [17] News & Magazines 0f0f1f1 17.4 4,759 3.8 50K+ 1084
3 Xabber [29] Communication 925e996 46.2 1,509 4.1 1M+ 800
4 OctoDroid [18] Productivity e491d76 43.2 876 4.5 100K+ 821a

5 Simple Task [22] Productivity 0572a62 4.1 288 4.7 10K+ 862a

6 Face Slim [10] - c62bb57 3.5 206 - - 319a

7 Simple Camera [21] Tools 8aebf00 2.2 123 4.2 100K+ 120b

8 Walleth [27] Finance 929216c 9.1 100 4.3 5K+ 201b

9 Calendula [5] Health & Fitness 39e6e96 26.3 76 4.5 1K+K 92b

10 Open Manga [19] - ac3cd27 20.7 51 - - 47
“–” means not applicable. Superscript “a” means the issues were acknowledged and developers agreed to fix in future.
“b” means the issues have already been fixed.

false positives because it failed to recover issue workarounds
that already exist in the apps. Third, we failed to reach the API
callsites of several apps because they crashed prematurely.

Table II gives the information of the ten apps, whose FIC
issues were successfully reproduced. These apps (1) contain
thousands of lines of code (large-scale), (2) cover different app
categories (diversified), (3) receive over 50 stars on GitHub
and thousands of downloads on Google Play (popular), and
(4) are rated at least 3.8 on Google Play (decent quality).
We reported the ten reproducible issues to the original app
developers to seek their feedback. The issue IDs of our
reports are provided in the last column of Table II. Among
the ten reported issues, seven have been acknowledged and
four were immediately fixed. For example, the issue 92 of
Calendula would crash the app when invoking the built-in
DatePicker API on some popular Samsung devices running
Android 5.0 (e.g., Galaxy Note 5). Upon receiving our report,
the app developer quickly fixed the issue with a workaround
documented in our issue archive [20].

These results show that API-device correlations can help
detect FIC issues in Android apps and reproduce the issues
on the corresponding issue-triggering device models. The
information provided by our FIC issue archive (Section IV-B1)
is actionable and can facilitate the detection and diagnosis
of FIC issues. Specifically, the device identifiers and APIs
specified in API-device correlations can help reduce the search
space of FIC issues. With the information, developers can
design tests to cover the app components that call FIC issue-
inducing APIs and execute these tests on the device models
that can trigger the FIC issues to expose potential issues.

V. DISCUSSIONS

A. Threats to Validity

Quality of input app corpora. PIVOT can only identify
valid API-device correlations from apps that contain code
snippets handling FIC issues. It is unlikely that such code
snippets would exist in apps that are not well-maintained. As
such, the quality of app corpora can affect the performance
of PIVOT. It is suggested to build an app corpus with popular

apps on app stores as we did in our experiments. PIVOT can
then extract valid and useful API-device correlations.

Other code patterns to handle FIC issues. PIVOT learns
API-device correlations from code snippets handing FIC is-
sues, which feature device-checking statements with the use
of class android.os.Build. Note that there can be other
code patterns to handle FIC issues. PIVOT may not discover
API-device correlations for all FIC issues. Nevertheless, the
practice of checking device information was shown to be
common in practice when handling FIC issues [60], [61].

Imprecise static analysis. PIVOT performs static analysis
on inter-procedural control flow graphs to extract API-device
correlations. It is possible that the graphs generated by static
analysis are imprecise or unsound [37]. Because of such im-
perfectness, PIVOT may miss some API-device correlations or
generate invalid API-device correlations. However, as PIVOT
learns API-device correlations from large app corpora, such
problems can be mitigated in PIVOT’s final output.

B. Comparison with FICFINDER

In our previous studies [60], [61], we conducted an em-
pirical study and published the empirical study dataset. We
also proposed FICFINDER to detect FIC issues in Android
apps. The goals of FICFINDER and PIVOT are different. While
FICFINDER aims to detect FIC issues with a given set of
predefined patterns, PIVOT aims to learn the knowledge of
FIC issues from popular apps. As shown in Section IV-B, the
knowledge learned by PIVOT can serve as input to FICFINDER
and help detect previously-unknown FIC issues.

We did not apply PIVOT to the apps used by the empirical
study in FICFINDER [60], [61] because the empirical study
involved only five apps, making it difficult for PIVOT to
distinguish valid API-device correlations from noises. Alter-
natively, we compared the FIC issues in FICFINDER’s dataset
with those learned by PIVOT. Ten of the 49 valid API-
device correlations learned by PIVOT are related to FIC issues
in FICFINDER’s dataset. Among the other 39 valid API-
device correlations that were not included in FICFINDER’s
dataset, 14 of them concern FIC issues that emerged in 2017
(FICFINDER’s dataset was published in 2016). This confirms
that PIVOT can identify new valid API-device correlations.



C. Automated API-Device Correlation Validation
In our experiments, we manually validated API-device cor-

relations. The manual process is subject to errors. To reduce
human efforts and provide more reliable validation results, we
plan to study automated validation of API-device correlations
in future. Particularly, we plan to combine static and dynamic
analysis to synthesize test apps from the apps that contain top-
ranked API-device correlations. With such test apps, we will
be able to exercise the APIs on the device models specified
by API-device correlations to validate the correlations.

VI. RELATED WORK

A. Android Fragmentation Issues
Several studies have been conducted to understand the

problems induced by Android fragmentation. Han et al. [38]
mined Android issue tracking system and provided evidence
of Android fragmentation. Other studies pointed out that
Android fragmentation could induce various consequences.
Liu et al. [48] and Hu et al. [40] found that a notable
proportion of performance issues and WebView bugs are
specific to device models. Li et al. [44] found that app
usage patterns are sensitive to device models. Fan et al. [33]
found that the compatibility issues induced by fragmentation
commonly cause framework crashes. These studies pointed
out the issues induced by Android fragmentation but did not
propose techniques to address them.

Other studies proposed techniques to mitigate the problems
induced by Android fragmentation. For example, several tech-
niques were proposed to prioritize device models for Android
app testing. Vilkomir et al. [58] selected Android devices
based on combinatorial methods to cover different device
characteristics. Khalid et al. [42] proposed to prioritize testing
devices based on the user ratings of other apps from the same
category. Lu et al. [51] designed PRADA, which prioritizes
device models based on the usage data of similar apps. These
techniques prioritize device models but are not specifically
designed to catch FIC issues. As a result, they cannot provide
actionable information to guide FIC issue detection. Fazzini et
al. [34] designed DIFFDROID to identify GUI inconsistencies
of Android apps when they run on different Android platforms.
DIFFDROID compares GUI models of an app when running
on different device models, but such comparisons do not help
reduce the search space of FIC issues. Huang et al. [41] studied
compatibility issues induced by the evolution of callback APIs,
whose scope is different from ours. Our previous studies [60]
conducted an empirical study of FIC issues in open-source
apps and designed a static analyzer FICFINDER to detect
FIC issues. FICFINDER requires a given list of FIC issue
patterns, which were manually derived. However, manually
deriving issue patterns requires intensive human efforts and
may not be practical as FIC issues are constantly evolving. Li
et al. [46] proposed techniques to automatically learn patterns
of compatibility issues caused by Android framework API
evolution, whose scope is different from our study (we study
device-specific FIC issues). In comparison, PIVOT automat-
ically learns API-device correlations of device-specific FIC

issues from a given Android app corpus. Our case study
shows that the learned API-device correlations are useful and
can help detect previously-unknown FIC issues in real-world
Android apps.

B. Mining API Usage Patterns
Various techniques have been proposed to mine API usage

patterns from code repositories. The majority of them aim
to mine API co-occurrence relationships. PR-Miner [47] and
DynaMine [49] were proposed to mine sets of APIs that
frequently co-occur in code repositories. MAPO [62], [63]
was among the first techniques to mine frequently-used API
sequences. Follow-up studies further improved the pioneering
techniques [30], [35], [59]. Most of them rely on mining tech-
niques and adopt light-weight static analysis without analyzing
code control dependencies.

Several techniques were proposed to infer API calling
preconditions via static analysis and mining code repositories.
Ramanathan et al. [54] inferred preconditions that must hold
before API invocations from code revision histories. Nguyen
et al. [52] mined API preconditions with regard to the API
arguments and receivers. These techniques target at mining
general API preconditions that may not be relevant to FIC is-
sues. In addition, these techniques leverage traditional filtering
metrics such as confidence to identify valid API preconditions.
As shown in our evaluation, such metrics cannot effectively
prioritize valid API-device correlations. In contrast, PIVOT
focuses on learning API-device correlations and features a new
and effective ranking strategy to prioritize the correlations.

VII. CONCLUSION

In this paper, we proposed the first automated API-device
correlation learning approach, PIVOT, to facilitate FIC issue
detection. To effectively identify valid API-device correlations,
PIVOT performs inter-procedural static analysis to extract API-
device correlations and leverages a novel ranking strategy to
prioritize them. The evaluation results show that our ranking
strategy can effectively identify valid API-device correlations
and significantly outperform an existing technique. Based on
the learned API-device correlations, we built an archive of
FIC issues and further conducted a case study to show the
usefulness of API-device correlations. Our experiment results
and other data are published at our project website [20].

Currently, PIVOT requires human efforts to validate the
learned API-device correlations. In future, we plan to study
how to automate the validation process by combining program
analysis and test synthesis techniques.
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