
Exposing Library API Misuses via Mutation Analysis
Ming Wen∗, Yepang Liu†‖, Rongxin Wu∗, Xuan Xie‡, Shing-Chi Cheung∗ and Zhendong Su§¶

∗Department of Computer Science and Engineering
The Hong Kong University of Science and Technology, Hong Kong, China

Email: {mwenaa, wurongxin, scc}@cse.ust.hk
†Shenzhen Key Laboratory of Computational Intelligence

Southern University of Science and Technology, Shenzhen, China. Email: liuyp1@sustc.edu.cn
‡Sun Yat-sen University, China. Email: xiex27@mail2.sysu.edu.cn

§ETH Zurich, Switzerland. Email: zhendong.su@inf.ethz.ch ¶UC Davis, USA

Abstract—Misuses of library APIs are pervasive and often
lead to software crashes and vulnerability issues. Various static
analysis tools have been proposed to detect library API misuses.
They often involve mining frequent patterns from a large number
of correct API usage examples, which can be hard to obtain
in practice. They also suffer from low precision due to an
over-simplified assumption that a deviation from frequent usage
patterns indicates a misuse.

We make two observations on the discovery of API misuse
patterns. First, API misuses can be represented as mutants of
the corresponding correct usages. Second, whether a mutant will
introduce a misuse can be validated via executing it against
a test suite and analyzing the execution information. Based
on these observations, we propose MUTAPI, the first approach
to discovering API misuse patterns via mutation analysis. To
effectively mimic API misuses based on correct usages, we first
design eight effective mutation operators inspired by the common
characteristics of API misuses. MUTAPI generates mutants by
applying these mutation operators on a set of client projects and
collects mutant-killing tests as well as the associated stack traces.
Misuse patterns are discovered from the killed mutants that are
prioritized according to their likelihood of causing API misuses
based on the collected information. We applied MUTAPI on 16
client projects with respect to 73 popular Java APIs. The results
show that MUTAPI is able to discover substantial API misuse
patterns with a high precision of 0.78. It also achieves a recall
of 0.49 on the MUBENCH benchmark, which outperforms the
state-of-the-art techniques.

Index Terms—Mutation Analysis, Library API Misuses

I. INTRODUCTION

The use of third-party libraries in Java projects is common.
According to a recent study [1], a Java project directly depends
on 14 different libraries on average. The Maven repository [2]
has indexed over 8.77 millions third-party libraries. However,
correct usages of Application Programming Interfaces (APIs)
provided by many third-party libraries are loosely documented
or left unrevised after API updates [3]–[5]. As a result, API
misuses are pervasive and account for a major cause of
software bugs (e.g., performance issues, software crashes and
vulnerability issues [6]–[11]). To detect API misuses, various
static analysis tools have been proposed [12]–[20]. These tools
commonly mine API usage patterns from software codebases.
Those frequent patterns are deemed as correct API usages,
whereas deviations from such patterns are regarded as misuses.

‖Yepang Liu is the corresponding author

A recent study reported that existing static-analysis based
API misuse detectors suffer from low recall and precision
in practical settings [6]. The study also made suggestions to
address the two limitations. First, to improve recall, existing
detectors need to mine frequent patterns from more correct
API usage examples. However, it is difficult to obtain sufficient
correct API usage examples in practice, especially for newly
released libraries. Second, to improve precision, the detectors
need to go beyond the oversimplified assumption that a devia-
tion from frequent usage patterns is a misuse. An uncommon
usage of an API is not necessarily an incorrect usage.

In this study, we propose to approach the problem of API
misuse patterns’ discovery from a new perspective through
mutation analysis [21]. Mutation analysis has been widely
used in software debugging and testing [21]. It mainly contains
two steps. First, it creates substantial mutants by making small
modifications to a program with a set of well-defined mutation
operators that mimic different kinds of programming mistakes.
Second, it runs a given test suite on the mutants and collects
execution information for various quality analyses [22]–[26].

Our solution is inspired by two observations. First, various
misuses of an API can be viewed as the mutants of this API’s
correct usages. Therefore, API misuses can be created via
applying specifically-designed mutation operators on correct
API usages. The design of these mutation operators can be
guided by the characteristics of common API misuse patterns,
which have been well investigated by existing studies [4], [6].
For instance, one misuse pattern is missing exception handling
[6]. Many APIs could throw exceptions and the correct usages
of these APIs require appropriate exception handling. Given
one correct usage of such APIs, we can actively violate the
correct usage (e.g., by deleting the exception handlers) to
create an API misuse. Other patterns of API misuses (e.g.,
missing method call [6]) can be similarly created via applying
certain mutation operators (e.g., deleting method call). In this
way, we can obtain substantial mutants based on an API’s
correct usages. Unlike existing work [12]–[20], our solution
does not require pattern mining from a large number of correct
API usages. Instead, it actively creates substantial mutants
mimicking API misuses of different patterns. However, de-
ciding if a mutant such created introduces an API misuse is
challenging since the manifestation patterns of different API

misuses are divergent. Our intuition to address this challenge
is that we can validate whether a mutant introduces an API
misuse via executing it against the correct usages’ test suites
and analyzing the execution information. This intuition is
inspired by the observation that substantial (42.8%) tests of
well-maintained projects would trigger library usages during
execution (Section II-C). Therefore, we conjecture that library
API misuses can be exposed and validated via running the
test suites of client projects (confirmed in Section V-A). In
this way, our solution does not make the assumption that a
deviation from frequent API usage patterns is a misuse.

In this paper, we propose MUTAPI, an automatic approach
that leverages MUTation analysis to discover API misuse
patterns. To effectively discover API misuse patterns, MU-
TAPI addresses the following three challenges.

First, discovering API misuse patterns requires MUTAPI to
generate mutants that violate existing correct usages, and thus
how to effectively generate mutants that mimic API misuses is
the key. Conventional mutation operators such as those defined
by PIT [27] are less likely to achieve such a goal (Section
V-C). To address the challenge, we first investigate how to
model correct API usages and then break the modelled usages
systematically. Inspired by a recent study [4], MUTAPI models
correct API usages as structured call sequences based on a
predefined grammar. We then designed eight types of novel
mutation operators with the aim to actively violate such mod-
eled usages in a systematic way (Section III-A). With these
mutation operators, MUTAPI generates substantial mutants by
applying them on certain client projects that use a target API.
MUTAPI then runs those mutants against the test suites of the
client projects and collects killing relations, which includes the
killed mutants and the corresponding killing tests. A mutant is
killed if its test output differs from that of the original program.

Second, how to validate whether a mutant indeed introduces
an API misuse is another challenge. One possible way is to
check whether a mutant has been killed by the test suite.
However, a mutant can be killed due to multiple reasons (e.g.,
a logic bug unrelated to any API misuses). How to precisely
identify those killing relations arising from API misuses is
a key challenging. MUTAPI addresses this challenging via
analyzing the failing stack traces of the killing tests (denoted as
killing stack trace). Specifically, it leverages the killing stack
traces to prioritize killing relations based on the following
observations. First, given a killing stack trace, the failure’s
root cause appears closer to the failure point [28]. Therefore,
if the top frames of a killing stack trace are library functions,
it is more likely to be caused by API misuses (i.e., the root
cause resides in the API calls). Second, killing stack traces of
a target API should be specific to this API. If a killing stack
trace is also observed in the mutation analysis of other APIs, it
is less likely to be caused by the target API’s misuses. Third,
killing stack traces of a target API should not be specific to
a certain usage. If a killing stack trace is only observed in
the mutation analysis of a specific project, it is more likely
to be caused by the bugs specific to this project instead of
a general misuse of the target API. MUTAPI leverages these

three observations to prioritize observed killing realtions, and
assumes those top ranked ones to be caused by the misuses
of the target API.

Third, how to effectively distill API misuse patterns after
identifying a set of killing relations arising from API misuses
is also a challenge. To address this challenge, MUTAPI distills
API misuses from substantial killed mutants of the identified
killing relations. Specifically, it first models an API misuse as
a pair of a violation type and an API usage element, following
the findings of recent studies [4], [6]. It then selects those most
frequently observed violation pairs as API misuse patterns.

To evaluate MUTAPI, we selected 73 popular Java APIs
collected by recent studies [4], [6], and 16 client projects
collected from popular repositories on GitHub. The evaluation
results show that MUTAPI is able to achieve a high precision
of 0.78 in discovering real misuse patterns of popular APIs.
It also achieves a higher recall on the benchmark dataset
MUBENCH [6] compared with the state-of-the-art techniques.

In summary, this paper makes the following contributions.
• Originality: To the best of our knowledge, this is the

first study that applies mutation analysis to discover API
misuse patterns, and empirical evidences have shown that it is
effective in exposing and discovering API misuse patterns.
• Implementation: We implemented our approach MUTAPI

as a tool that can detect API misuse patterns of Java libraries.
It employs a set of new mutation operators, which have shown
to be effective in dicovering different API misuse patterns.
• Evaluation: Our evaluation results show that MUTAPI can

discover real misuse patterns of popular Java APIs with high
precisions. It also detects more misuse instances on the bench-
mark dataset MUBENCH compared with existing approaches.

II. RELATED WORK AND PRELIMINARIES

In this section, we first introduce related work on mutation
analysis and API misuse detection. We then introduce the
motivation of this study together with its challenges.
A. Mutation Analysis

Given a program p and a set of mutation operators O,
the key idea of mutation analysis is to generate substantial
mutants, M, in which each mutant m is a variant of p. The
generated mutants are then executed against p’s test suite T .
A mutant m is killed if there exists a test t ∈ T whose
execution on p and that on m result in different observable
final states. Mutation analysis has many applications (e.g.,
[22], [24]–[26], [29]–[32]), such as evaluating the quality of a
test suite (e.g., [22]), test suite reduction (e.g., [30]), improving
fault localization (e.g., [23], [26]), security analysis (e.g., [24],
[25]), program repair (e.g., [31], [32]) and so on. For instance,
to evaluate the quality of a test suite T [22], mutation score,
the proportion of killed mutants in M, is computed. The
higher the mutation score, the more likely that T can detect
real bugs, and thus the higher quality of the test suite. To
the best of our knowledge, we are the first to apply mutation
analysis in discovering API misuse patterns. In this study, we
use k to denote a killing relation that a mutant m is killed by
a test t. By executing a test suite T on all mutants M, we
obtain a set of killing relations K.

TABLE I: The Ratio of Test Classes Triggering Target APIs
Project Apache BCEL Apache Lang Apache Text HttpClient Lucene-Core
Ratio 0.324 0.483 0.328 0.431 0.573

B. Library API Misuse Detection
Uses of library APIs are often subject to constraints such

as call orders and call conditions [6]. Unfortunately, many of
such constraints are insufficiently specified by APIs’ docu-
mentations [3]. As a result, developers also refer to informal
references, such as Stack Overflow, to understand the usages of
an API [33]. However, as revealed by a recent study [4], code
snippets on Stack Overflow can be unreliable, even for those
accepted and upvoted answers. Violations of the constraints
that should be satisfied may induce software bugs [6]–[11]
(e.g., crashes and security issues). Therefore, it motivates a
wealth of researches on mining and detecting API misuses
automatically [12]–[20]. These existing approaches commonly
mine frequent API usage patterns and assume an outlier that
deviates from frequent patterns as an API misuse. They differ
from each other mainly in how to encode API usages and
model frequency. For example, PR-MINER encodes API us-
ages as a set of function calls invoked within the same method,
and then leverages frequent itemset mining to identify patterns
with a minimum support of 15 usages [12]. JADET builds a
directed graph based on method call orders and call receivers
[14]. In the graph model, a node represents a method call
and an edge represents a control flow relation. GROUPMINER
creates a graph-based object usage representation to model
API usages for each method. It then leverages subgraph mining
techniques to detect frequent usage patterns with a minimum
support of 6 [16]. DMMC detects missing calls in a set of
method invocations triggered by an object [7]. TIKANGA is
built on top of JADET [20]. It extends the properties of call
orders to general Computation Tree Logic Formulae on object
usages. It then leverages model checking to identify those
formulae with a minimum support of 20 in a given codebase.
C. Observation and Motivation

As mentioned earlier, the philosophy of mutation analysis
is to mimic program bugs via applying mutation operators. In
this study, we aim to adopt such a philosophy to detect API
misuse patterns, which are a common type of program bugs.
The idea is inspired by the following two observations.

First, various misuses of an API can be represented
as mutants of its correct usages. Let us illustrate this
using the code snippet in Figure 1, which is from project
Apache Commons Lang [34]. It contains a correct usage of
API java.lang.Float.parseFloat. Based on this usage,
we can generate multiple mutants. Two of them are given
as examples in Figure 1, where the second one Mutant#2
repesents an API misuse. It is stated in the API’s signature that
NumberFormatException can be thrown. Mutant#2 is ob-
tained by deleting the try-catch statement that encloses the
API call. It violates the correct usage of Float.parseFloat
and follows a well-known API misuse pattern, i.e., missing
exception handling [4], [6].

Second, a program’s test suite can be leveraged to validate
whether a generated mutant of the program indeed misuses

public static float toFloat(String str, float defaultValue) {
if (str == null) {

return defaultValue;
}
try {

return Float.parseFloat(str);

// return defaultValue; Mutant#1 Replace Return Expression

} catch (final NumberFormatException nfe) {
return defaultValue;

}
// try { Mutant#2 Delete Try {} Catch

return Float.parseFloat(str);
// } catch (final NumberFormatException nfe) {
// return defaultValue;
// }
}

Fig. 1: Two Mutants of API Usage of Float.parseFloat()

100

100.5

101

101.5

102

Apache BCEL Apache Lang Apache Text HttpClient Lucene−Core

T
he

 N
um

be
r

of
 T

ar
ge

t A
P

I C
al

ls

Fig. 2: The Number of Target API Calls Triggered Per Test Class
an API. To study the feasibility of leveraging this observation,
we randomly selected five popular projects on GitHub and
analyzed whether the execution of the associated test suites
can trigger popular API calls. Specifically, we selected the
100 popular APIs collected by an existing study [4]. Table
I shows the results. On average, the execution of 42.8%
of the test classes (i.e., ranging from 32.4% to 57.3% for
different projects) triggers at least one of these APIs. For
each test class, we further investigated the number of in-
vocations of these APIs. Figure 2 shows the results, which
indicate that substantial library APIs are triggered by test
executions. Furthermore, 60.0% of these APIs can throw ex-
ceptions, over 85.0% of which are unchecked exceptions.
The findings suggest that if we violate the correct usages
of these APIs via applying mutation operators, there is a
high probability that the mutants representing API misuses
can be detected by the associated test suite in the form of
runtime exceptions. For instance, Mutant#2 can be killed
by the test NumberUtilsTest.testToFloatStringF() via
throwing NumberFormatException. The corresponding fail-
ing stack trace is shown in Figure 3b.

Based on the above observations, we are motivated in this
study to leverage mutation analysis on multiple open-source
projects in the wild to discover API misuse patterns.
D. Challenges

Applying mutation analysis to discover API misuse patterns
needs to address three challenges. First, how to design muta-
tion operators that can effectively mimic API misuses remains
unknown. Second, differentiating mutants that induce API
misuses from those that do not is non-trivial. As mentioned
before, we can leverage test information to identify whether
a mutant introduces an API misuse. However, tests might fail
due to multiple reasons. The example of Mutant#1 shown in
Figure 1, which is not an API misuse, can also be killed by
the test testToFloatStringF() with the stack trace shown
in Figure 3a. Therefore, we cannot simply conclude that a
mutant introduces an API misuse by checking whether it is
killed by tests designed for the original program. Conceptually,
killing relations can arise from three types of causes. The first

java.lang.AssertionError: toFloat(String,int) 1 failed
at org.junit.Assert.fail(Assert.java:88)
at org.junit.Assert.assertTrue(Assert.java:41)
at org.apache.commons.lang3.math.NumberUtilsTest.testToFloatStringF(NumberUtilsTest.java:119)
at jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:564)
at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:50)
at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12)
at org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:47)

1
2
3
4
5
6
7
8
9
10

(a) Killing Stack Trace #1 of Mutant #1

java.lang.NumberFormatException: For input string: "a"
at jdk.internal.math.FloatingDecimal.readJavaFormatString(FloatingDecimal.java:2054)
at jdk.internal.math.FloatingDecimal.parseFloat(FloatingDecimal.java:122)
at java.lang.Float.parseFloat(Float.java:455)
at org.apache.commons.lang3.math.NumberUtils.toFloat(NumberUtils.java:81)
at org.apache.commons.lang3.math.NumberUtilsTest.testToFloatStringF(NumberUtilsTest.java:120)
at jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:564)
at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:50)

1
2
3
4
5
6
7
8
9
10

(b) Killing Stack Trace #2 of Mutant #2
Fig. 3: Two Examples of Killing Stack Traces from Mutants Made on API Float.parseFloat

TABLE II: Notations Used in This Study
Notation Description
P ; p A set of client projects P and one client project p
A ; a A set of target library APIs A and API a
M ; m A set of mutants M and one single mutant m
T ; t A test suite T and one test case t
K ; k A set of killing relations K and one killing relation k
S ; s A set of stack traces S and one stack trace s
atarget The target API for mutation testing
k〈p,a,m,t〉 Mutant m made on API a of project p killed by t

sk The failing stack traces observed in killing relation k

type resides in the library (Type 1), which indicates that the
test fails due to the buggy implementation of the API. The
other two types of causes reside in the client project, which
indicates that the client program is “buggy” after applying
mutation operators. Among them, one type of “bug” is caused
by misuses of the API (Type 2) while the other is not (Type 3).
Useful API misuse patterns can only be mined from Type 2
“bugs” (e.g., Mutant#2 in Figure 1), and patterns mined from
Type 3 “bugs” (e.g., Mutant#1 in Figure 1) will result in false
positives. Distinguishing the root cause for a killing relation
is challenging. Third, even if we can successfully identify a
set of mutants that introduce API misuses, generalizing these
mutants to API misuse patterns is non-trivial.

III. MUTAPI APPROACH

This section presents our approach, the overview of which
is shown in Figure 4. The input of MUTAPI is a set of client
projects (i.e., including source code and the associated test
suite) and a set of target APIs. The analysis process consists
of three main steps. First, MUTAPI generates mutants by
applying a predefined set of mutation operators on the target
APIs’ usages in the client projects and then runs the tests.
Second, it collects the killing relations and prioritizes these
relations with respect to each target API. Third, it selects the
top ranked killing relations and mines API misuse patterns
from the associated killed mutants. The output of MUTAPI is
a list of misuses of the target APIs. The following subsections
introduce the details of each step. To ease presentation, Table
II summarizes the notations used in this study.

A. Conducting Mutation Testing
A set of mutation operators, which can systematically vio-

late correct API usages, is desired in order to apply mutation
analysis to discover API misuse patterns. Conventional muta-
tion operators (e.g., those defined in PIT [27]) are less likely to
achieve the goal. For instance, one major type of API misuses
is missing control statements [4], [6], e.g., missing exception
handling or if check statements. Conventional operators focus
on mutating conditional or mathmatics operators [27], and are

TABLE III: Grammar of Structured API Call Sequences
sequence ::= ε | call ; sequence | if (checker) {} ; sequence

| structure {; sequence ; } ; sequence
call ::= API(v1, .., vi, .., vn) | vrev=API(v1, .., vi, .., vn)

structure ::= if (cond) | else | loop | try | catch(ve)|finally
cond ::= condition expression | call | true | false

checker ::= cond involves receiver vrcv or parameter vi
API ::= method name

v ::= variable | exception | ∗

not designed to manipulate such control statements. Therefore,
they cannot effectively mimic such misuse patterns.

Motivated by a recent study [4], MUTAPI models correct
API usages as structured call sequences to effectively mimic
various types of API misuses. Such structured call sequences
abstract away the syntactic details such as variable names, but
keep the temporal ordering, control structures and checkers
of API calls in a compact manner [4]. We adapt the grammar
defined by the study [4] to represent structured call sequences,
which is shown in Table III. A structured call sequence
consists of several API calls, each of which can be guarded by
structure statements (e.g., try-catch) or followed by checker
statements (e.g., null pointer checker). Overloaded API
calls are differentiated via considering the parameters and their
types. Figure 5 shows an usage of the class Iterator. Sup-
pose our target API (i.e., atarget) is Iterator<>.next() at
line 5. To model the usage of atarget, MUTAPI first identifies
the object (e.g., iterator), on which atarget is invoked, and
then identifies other APIs invoked by this object within the
same method. In this example, API Iterator<>.hasNext()
triggered at line 4 will be included in the modeled sequence.
MUTAPI then conducts program slicing [35] (both backward
and forward) to extract those structure and checker statements
for each of the API call based on its receiver variables vrev
(e.g., value is the receiver variable at line 5) and parameters
vi. As a result, the if statement at line 7 will also be
included in the modeled sequence. Note that MUTAPI only
identifies those statements that directly depend on the variables
involved in API calls because such a setting is able to achieve
the best performance in modeling API usages for misuse
detection according to an existing work [4]. As a result, the
if checker at line 9 will not be sliced into the structured
sequence since the checked variable result does not directly
depend on the receiver variable value of our target API.
Therefore, the modeled structured sequence for the API usage
in Figure 5 is “if (hasNext()) {; rrev=next(); }; if
(rrev) {};”. The delimiter “;” here is a separator in the
grammar, which is different from the semi-colon used in Java.

Based on the modeled structured sequences of correct
usages of atarget, MUTAPI then tries to break such usages

Client	
Projects Target	APIs

Modeling API	Usages
Mutation	Testing

Input	of	MutAPI Conducting	Mutation	Testing

Collecting	Killing	Relations
Grouping	&	Ranking	Killing	Relations

Prioritizing	Killing	Relations

Selecting	Killing	Relations
Mining	API	Misuse	Patterns

Discovering	API	Misuse Patterns

Violation
Patterns of the
Target APIs

Output	of	MutAPI
Fig. 4: Overview of MUTAPI

public double foo() {
Iterator<Double> iterator = getValues();
Double value = null;
if (iterator.hasNext()) {

value = iterator.next(); // our target API
}
if (value == null) return getResult(0);
Double result = getResult(value);
if (result < 0) return 0;
return result;

}

1
2
3
4
5
6
7
8
9
10
11

Fig. 5: An Usage Example of Iterator<>.next()

via applying mutation operators systematically with the aim to
mimic various kinds of API misuses. Specifically, we designed
eight types of mutation operators, as shown in Table IV, guided
by the common characteristics of API misuse patterns [4], [6].
For the case of incorrect order of API calls [4], MUTAPI swaps
the orders of two call sequences (Type 1), deletes an API call
(Type 2) and inserts a new API call (Type 3). For the case
of missing checkers [6], MUTAPI deletes a checker if there is
one (Type 4). For the case of missing control structures [4],
[6], MUTAPI deletes the structures but keeps the enclosing
API calls (Type 5) or deletes the structures together with
the enclosing API calls (Type 6). For the case of missing
correct condition [4], [6], in a checker or an if statement,
MUTAPI randomly replaces the condition expression with
other condition expressions or boolean values (Type 7).
MUTAPI also mutates the arguments of API calls (Type 8). It
replaces the arguments of an API call with other compatible
variables (Type 8.1), inserts an argument (Type 8.2) or deletes
an argument (Type 8.3) to change the original method call to
a call of an overloaded method.

MUTAPI adopts an evolutionary process to generate mutants
randomly as described in Algorithm 1. Specifically, it applies
at most N mutation operators to the original program to
generate a mutant. Certain operators (e.g., replace one condi-
tion with another) require necessary code ingredients. In such
cases, MUTAPI searches from the original program to select
appropriate code elements randomly. By default, N is set to
1, and the effects of N is discussed in Section VI-A.

B. Prioritizing Killing Relations

MUTAPI collects plenty of killing relations K after exe-
cuting all mutants M against the test suites. Specifically, a
killing relation k is collected if mutant m with respect to
API a in client project p is killed by p’s test case t. In
particular, k is also denoted as k〈p,a,m,t〉. As described in
Section II-D, there are multiple inducing factors for a killing
relation, and determining whether the failure of the killing
test t is caused by the misuse of the target API atarget
is challenging. To tackle this problem, MUTAPI leverages
the killing stack traces st to prioritize those killing relations
induced by API misuses. For example, Figure 3 shows the
top 10 frames of the two killing stack traces for the two
mutants shown in Figure 1, respectively. One is induced by

Algorithm 1: Generating Mutants
input : p: the original program that has usages of atarget
input : O: the predefined eight types of mutation operators
input : Maxiter : the maximum number of iterations (set to 105)
input : N : the maximum number of operations to be applied
output: M: a set of generated mutants

1 M← p; iter ← 0
2 while iter ++ < Maxiter do
3 m←SelectAnMutantRandomly (M)
4 if GetNumberOfAppliedOperators (m) < N then
5 o←SelectOneMutationOperatorRandomly (O)
6 i←SelectOneCodeIngredientRandomly (p)
7 mnew ←GenerateNewMutant (m, o, i)
8 if M does not contain mnew then
9 M←M∪mnew

10 end
11 end
12 end

API misuse (i.e., missing exception handling), and fails due to
java.lang.NumberFormatException. The other is induced
by general errors unrelated to API misuses, and fails due to
java.lang.AssertionError. MUTAPI differentiates those
killing stack traces that are induced by API misuses from those
that are not through prioritization based on stack traces.

The prioritization is based on the analysis of substantial
killing stack traces collected from multiple client projects P .
To enable such cross-project analysis, MUTAPI preprocesses
these killing stack traces to remove frames related to client
projects (e.g., Frame 4 in Figure 3b) or the JUnit framework
(e.g., Frame 1 in Figure 3a) since these frames are unlikely
to characterize the patterns of stack traces induced by misuses
of library APIs. As a result, only those frames displayed in
blue background in Figure 3 are kept for further analysis.
The failing signature (e.g., java.lang.AssertionError or
java.lang.NumberFormatException) is also important to
understand the failure cause. Therefore, we also keep such
information in the processed stack traces. However, project-
specific information (e.g., toFloat() in stack trace #1 or for
input string: “a” in stack trace #2) has been filtered out. Two
killing stack traces are regarded as the same if both their failing
signature and the processed frames are the same.

After preprocessing each killing stack trace, MUTAPI ob-
tains a set of unique traces S. MUTAPI then groups those
killing relations whose killing stack traces are the same. With
respect to atarget, MUTAPI then tries to identify those killing
stack traces in S that are induced by the misuse of atarget
(denoted as target API misuse induced killing stack traces)
via prioritization based on the following insights.

Target API misuse induced killing stack traces should
not be specific to a certain usage. If a killing stack trace is
indeed induced by the misuse of atarget, it should be observed
in the mutation analysis of multiple usages of atarget across
different projects. Otherwise, such a stack trace is more likely
to be caused by the bugs specific to an API usage in a specific

TABLE IV: Mutation Operators to Violate API Usages
Type Designed Mutation Operator Description
1 sequence1 ; sequence2 ⇒ sequence2 ; sequence1 Swapping API call sequences
2 sequence1 ⇒ sequence1 ; sequence2 Adding an API call to a call sequence
3 sequence1 ; sequence2 ⇒ sequence2 Deleting an API call from a call sequence
4 if (checker) {} ; sequence ⇒ sequence Deleting the checker of receivers or parameters
5 structure { sequence1 ; } ; sequence2 ⇒ sequence1 ; sequence2 Deleting the control structure of a sequence
6 structure { sequence1 ; } ; sequence2 ⇒ sequence2 Deleting the control structure together with the enclosing APIs of a sequence
7 if (cond1|checker) ⇒ if (cond2 |true | false) Changing the control condition to other conditions or boolean values
8.1 API(t1, ..., ti, ..., tn) ⇒ API(t1, ..., tj , ..., tn) Replacing arguments (from ti to tj) of a method call
8.2 API(t1, ..., ti, ..., tn) ⇒ API(t1, ..., ti, ..., tn+1) Inserting arguments of a method call (changing API to an overloaded method)
8.3 API(t1, ..., ti, ..., tn) ⇒ API(t1, ..., ti, ..., tn−1) Deleting arguments of a method call (changing API to an overloaded method)

project instead of general misuses of atarget. Therefore, MU-
TAPI measures the ratio of usages whose mutation analyses
have observed the killing stack trace s to prioritize whether s
is caused by the misuse of atarget as follows:

freq(s) =
|{ui|ui ∈ U,mutation analysis of ui observed s}|

|{ui|ui ∈ U, ui is the ith usage of atarget}|
(1)

where U contains all the usages of atarget extracted from all
the client projects P .

Target API misuse induced killing stack traces should be
specific to this API. If a killing stack trace is induced by
the misuse of a target API, it should not be observed in the
mutation analysis of other APIs. Otherwise, such a stack trace
is less likely to be induced by the misuses of the target API
since it is general to multiple divergent APIs. Motivated by
this, MUTAPI measures the inverse frequency of s, which is
the ratio of the number of s observed in the mutation analysis
of atarget to that of all target APIs A, as follows:

inverseFreq(s) =
|{k〈p,atarget,m,t〉|k ∈ K, sk = s}|
|{k〈p,ai,m,t〉|k ∈ K, ai ∈ A, sk = s}| (2)

where k〈p,atarget,m,t〉 is a killing relation observed in the
mutation analysis of the target API atarget, while k〈p,ai,m,t〉
is a killing relation observed in that of another API ai.

The top frames of the target API misuse induced killing
stack traces should be the target library’s functions. As
revealed by existing studies, in a stack trace, functions where
the root causes reside appear closer to the failure point
[28]. The top frames of stack trace #2 shown in Figure
3a are functions from the library containing the target API
java.lang.Float.parseFloat. However, the top frames
of stack trace #1 are those functions related to the JUnit
framework. Here, we examine the original stack traces instead
of the processed ones in order to investigate the position
of each frame at the failure time. Therefore, killing stack
trace #2 is more likely to be induced by the misuse of API
java.lang.Float.parseFloat. Motivated by these obser-
vations, for a given stack trace, we propose to use the rankings
of those frames from the target library to approximate its
likelihood to be induced by misusing the library APIs.

likelihood(s) =

n∑
i=1

library(fi) ∗ 1/i (3)

where fi represents the ith frame of stack trace s. Function
library(fi) returns 1 if fi comes from the target library and
0 otherwise. For the stack trace shown in Figure 3a, the
likelihood 0.76, which is computed as 1

4 + 1
5 + 1

6 + 1
7 .

MUTAPI prioritizes all the unique stack traces S with

respect to the target API atarget via computing the following
score for each stack trace s.

score(s) = freq(s) ∗ inverseFreq(s) ∗ likelihood(s) (4)

C. Discovering API Misuse Patterns
For each unique killing stack trace s in S, MUTAPI com-

putes its score with respect to atarget. MUTAPI then re-
trieves all killing relations whose killing stack traces are the
same as s. Let Ks denote such a set of killing relations,
where Ks={k|k ∈ K, sk = s}. MUTAPI distills API misuse
patterns from those killed mutants Ms associated with Ks.
To effectively distill API misuses, MUTAPI models an API
misuse as a violation pair, p = 〈violation type, API usage
element〉, following a recent work [6]. Specifically, there
are three violation types, missing, redundant and incorrect,
according to existing studies [4], [6]. An API usage element
can refer to a method call, null checker, condition, exception
handling, iteration, parameter and so on [4], [6]. Specifically,
MUTAPI leverages the following rules to distill violation pairs
from mutants via investigating the applied mutation operators.
MUTAPI distills violation pairs of type missing from mutants
created by mutation operators #3, #4, #5, #6, and #8.3 since
they delete code elements; violation pairs of type redundant
are distilled from mutants created by mutation operators #2
and #8.2 since they add code elements; and violation pairs
of type incorrect are distilled from mutation operators #1, #7
and #8.1 since they replace existing code elements with others.
For API usage element, MUTAPI distills it via analyzing the
code element that has been mutated. For instance, the second
mutant shown in Figure 1 is generated by applying mutation
operator #5. Therefore, the violation type is missing. The code
element being mutated is a try-catch statement. As a result,
the distilled violation pair is 〈missing, exception handling〉.

Multiple violation pairs can be distilled based on those mu-
tants Ms. Therefore, MUTAPI further prioritizes these pairs
based on their frequencies. Specifically, MUTAPI identifies
a set of unique pairs PMs

based on Ms. It records the
number of occurrences for each vp in PMs (i.e., denoted as
count(vp)). MUTAPI then prioritizes all the violation pairs
based on their occurrences among all the pairs distilled:

ratio(vp) =
count(vp)∑

vpi∈PMs
count(vpi)

(5)

Finally, the suspicious score for a violation pair vp to be the
misuse of the target API atarget is computed as:

suspicious(vp, atarget) = score(s) ∗ ratio(vp) (6)

where score(s) measures the likelihood of those killing re-
lations Ks sharing the same stack trace s to be induced by
the misuses of atarget, and ratio(vp) measures the frequency
of the violation pair vp observed among all violation pairs
distilled from those killed mutants associated with Ks.

IV. EXPERIMENT SETUP

This section presents our experiment setup and the research
questions to be investigated.

A. Target APIs Selection

To evaluate the effectiveness of MUTAPI, we selected 73
popular Java APIs collected by a recent study [4] for exper-
iments1. Among them, 43 are the most frequently discussed
APIs in Stack Overflow (e.g., Iterator<>.next()). These
APIs are often used in practice, and developers are frequently
confused by their usages. The remaining 30 APIs come
from MUBENCH [6], which is a benchmark dataset of API
misuses. These APIs are in diverse domains, and the majority
of them come from four categories: Common Library (e.g.,
math, collection, time, xml), GUI (e.g., Swing), Security (e.g.,
java.security.Cipher()) and Database.

B. Client Projects Selection

In order to discover API misuse patterns, MUTAPI requires
a set of client projects to perform mutation analysis. In this
study, we selected 16 open-source Java projects from four
different categories as shown in Table V. These projects are
selected randomly from GitHub that satisfy the following two
criteria. First, the number of unique target APIs that it covers
should be greater than 15. Since MUTAPI aims at detecting
misuses with respect to the selected target APIs, the selected
client projects should contain as many usages of those APIs
as possible. It is hard to find a client project that triggers all
the 73 target APIs since those APIs are from diverse domains.
Therefore, we set a reasonable threshold of 15. Our second
criterion is that the mutation coverage (measured using PIT
[27]) of a client project should be greater than 0.70. We
set this threshold to ensure the test suite’s quality [39] since
MUTAPI relies on the associated test suite to validate whether
a mutant introduces an API misuse. We will further discuss
the effect of the test suite’s quality on the performance of
MUTAPI in Section VI. With the two criteria, we randomly
selected four Java projects from each of the four categories of
domains where the 73 APIs commonly come from (i.e., GUI,
Library, Security and Database). The categorization of the
client projects is based on the Apache official definition [40]
and GitHub Topics [41]. In total, the selected 16 projects cover
55 distinct APIs among the selected 73 APIs. The remaining
18 APIs are not covered because they are rarely used by large-
scale and popular projects (e.g., jsoup.Jsoup.connect()).

1The prior study collected 100 popular APIs [4]. We excluded 27 Android
APIs in our study because the mutation analysis for Android apps is different
from that for general Java projects [36]–[38] (e.g., the former requires
mutation operators to mutate the AndroidManifest.xml file)

TABLE V: Selected Client Projects
Category Project #Covered API #Source #Test #KLOC

GUI

Apache FOP [42] 35 1577 391 363.2
SwingX [43] 28 551 340 215.4
JFreeChart [44] 19 637 350 294.8
iTextPdf [45] 34 894 609 298.6

Library

Apache Lang [34] 24 153 174 144.1
Apache Math [46] 19 826 498 307.1
Apache Text [47] 17 85 63 40.8
Apache BCEL [48] 23 417 75 75.7

Security

Apache Fortress [49] 22 214 74 122.2
Santuario [50] 24 467 198 135.6
Apache Pdfbox [51] 28 598 103 154.1
Wildfly-Eytron [52] 36 763 151 161.3

Database

JackRabbit [53] 34 2443 646 611.4
Apache BigTop 22 176 52 20.4
H2Database [54] 20 566 317 305.4
Curator [55] 18 197 52 20.4

C. Research Questions
We study three research questions to evaluate MUTAPI:
• RQ1: Can MUTAPI discover API misuse patterns? What
kinds of misuse patterns can be more easily detected by it?

MUTAPI generates a ranked list of API misuse patterns.
In RQ1, we investigate whether those top-ranked API misuse
patterns detected by MUTAPI are true positives. Specifically,
we use the metric Precision@N to evaluate the performance of
MUTAPI. Precision@N reports the percentage of true positives
among the top N API misuse patterns (N = 1, 5, 10, ...)
reported by MUTAPI. To judge whether a detected misuse
pattern is a true positive or not, we follow the strategy adopted
by an existing study [4]. Specifically, we manually inspected it
based on online documentations (i.e., whether the misuse has
been documented online) and existing literature (e.g., whether
the misuse pattern has been reported by existing studies). We
then investigate the characteristics of the APIs whose misuse
patterns have been detected by MUTAPI by checking the
associated Java documentations.
• RQ2: Can MUTAPI detect API misuse instances on the
state-of-the-art benchmark dataset MUBENCH?

Based on the discovered misuse patterns (i.e., violation
pairs), MUTAPI is able to detect misuse instances. Specifically,
MUTAPI applies the same analysis as described in Section
III-A to model usage of an API in the form of Structured
API Call Sequences. Then, it checks whether the modelled
sequences violate confirmed misuse patterns. We applied MU-
TAPI to MUBENCH [6] to see if it can detect the API misuses
in the benchmark dataset. Specifically, we investigate the recall
of MUTAPI, i.e., the ratio of the API misuses that can be
detected by MUTAPI among the 53 real instances used in
the Experiment R in the MUBENCH work [6]. We chose
those misuses in Experiment R since they are all real misuse
instances identified from open-source projects. To compare
with existing approaches, we chose four baselines (i.e., JADET
[14], GROUPMINER [16], DMMC [7] and TIKANGA [20])
that have been systematically evaluated by existing study [6].
• RQ3: Compared with conventional mutation operators, how
effective and efficient do our proposed mutation operators
perform in detecting API misuse patterns?

In this work, we propose eight types of mutation operators
specific for API misuse detection, which are adopted by
MUTAPI in mutation analysis. In this research question, we
compare our proposed mutation operators with the traditional

TABLE VI: Generated Mutatns and Killing Relations
Project #Mutant #Killing Relation #Unique Trace #PitMutant

Fop 4024 6539 64 12845
SwingX 1063 9373 36 12348

Chart 1951 1603 139 6250
iTextPdf 9323 36083 102 11753

Lang 6144 16890 174 6502
Math 1599 34882 42 14726
Text 837 1408 64 6740
Bcel 4072 10338 86 9827

Santuario 2171 22521 27 3909
Pdfbox 4807 45735 29 11381

Fortress 1947 9015 55 3115
Wildfly 2478 6473 40 4091
Rabbit 1431 5033 48 4175

BigTop 937 2107 37 2508
H2 6155 2036 67 9087

Curator 3321 5406 43 5431
Average 3266 13465 65 7793

0
0.2
0.4
0.6
0.8
1

1 5 9 13 17 21 25 29 33 37 41 45 49

Rank

Precision@N

Fig. 6: Precision@N of MUTAPI for the Top-Ranked Misuses

ones used in PIT [27] using two metrics: (1) efficiency (i.e.,
the time required for mutation analysis) and (2) effectiveness
(i.e., the number of API misuse patterns detected).

V. EXPERIMENTAL RESULTS

A. RQ1:Effectiveness of MUTAPI

We applied MUTAPI to all client projects to discover misuse
patterns of our selected target APIs. MUTAPI generated lots
of mutants and collected substantial killing relations with the
associated killing stack traces. Table VI shows the statistics.
Specifically, MUTAPI generated 3,266 mutants and collected
13,465 killing relations per client project. After processing the
killing stack traces (i.e., removing client project frames), it ob-
tained 65 unique stack traces per client project. MUTAPI then
analyzed those killing relations across different client projects
and distilled around 300 API misuse patterns (i.e., violation
pairs). We manually examined the top 50 patterns following
the procedures as described in Section IV-C. Figure 6 shows
the results of Precision@N. It shows that MUTAPI achieves
a high precision of 0.90 within the top 10 candidates. The
precision slightly drops to 0.78 within the top 50 ones. Table
VII shows several selected top-ranked violation pairs that are
real API misuse patterns, which cover different types: missing
checker, missing call, missing exception, incorrect condition
and redundant call. These results show that MUTAPI can
discover real API misuse patterns with a high precision.

In the detected patterns, missing necessary checker if
(rev==null) on the receiver of API Line.intersection()
is ranked at the first place. For the two correct usages
of this API in the codebase, one of which is shown in
Figure 7, MUTAPI generated mutants (i.e., deleting the
checker) that were killed by the associated test suite with
NullPointerException. The killing stack trace is unique
to this API (i.e., the inverse frequency is high) whose top

frames are method invocations from the target library (i.e.,
the likelihood is high). Furthermore, the killing stack trace
has been observed in the mutation analysis for both of the two
correct usages (i.e., the frequency is high). As a result, missing
the checker is deemed as a misuse of Line.intersection()
with high confidence. This misuse has been confirmed by
existing literature [6]. Figure 8 shows another example, which
shows a correct usage of the API Iterator<>.next(), and
the associated killing stack trace after deleting the structure
containing API call Iterator<>.hasNext(). Such a killing
stack trace was observed during the mutation analysis of
multiple correct usages across different client projects (e.g.,
jfreechart, commons-bcel and commons-math).

We further investigated the documentations of APIs whose
misuse patterns were discovered by MUTAPI to see whether
they share similar characteristics. We found that 78.9% of
them will throw unchecked exceptions. Figure 9 shows the
distributions of these unchecked exceptions. Note that, the sum
of the distributions for all the exceptions is greater than 1, since
an API might throw multiple types of exceptions. The above
results indicate that MUTAPI is more effective in detecting
misuses of those APIs that will throw unchecked exceptions.
This is because those mutants representing such misuses are
more likely to be killed in the form of runtime exceptions
(i.e., their killing does not require strong test oracles). There
are also other types of APIs whose misuses are less likely to
be detected by MUTAPI (see Section VI-B).

B. RQ2:Performance of MUTAPI on MUBENCH Benchmark

Figure 10 shows the recall of MUTAPI and the baselines
on the benchmark of MUBENCH. The results of baselines are
directly extracted from the previous study [6]. Note that there
are two experimental settings for the baseline approaches. One
is a practical setting which does not include any hand crafted
API usages (denoted as Recall#Practical in Figure 10). The
other setting involves hand crafted API correct usages (denoted
as Recall#Crafted in Figure 10). The two settings are detailedly
// line is an object of type Line passed from the parameters
Cartesian3D v1D = line.intersection(subLine.line);
if (v1D == null) { // Necessary Checker

return null;
}
Location loc1 = remainingRegion.checkpoint(line.toSubSpace(v1D));

Fig. 7: A Correct Usage of API Line.intersection()

if (!iterator.hasNext()) {
return EMPTY;

}
final Object first = iterator.next();

-1:java.util.NoSuchElementException
0:java.util.ArrayList$Itr.next()
6:java.lang.reflect.Method.invoke()

(a)	A	Correct	Usage (b)	Killing	Stack	Trace
Fig. 8: A Correct Usage and the Associated Killing Stack Trace of
Iterator<>.next()

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

NoSuchElementException
IndexOutOfBoundsException

NullPointerException
ClassNotFoundException

SecurityException
NumberFormatException

IllegalStateException
NoSuchAlgorithmException

UnsupportedEncodingException
InputMismatchException

Fig. 9: Distributions of Detected Unchecked Exceptions

TABLE VII: Examples of Top-Ranked Discovered Violation Pairs
Rank API VIolation Pair API Element Description & Confirming References

1 rcv = Line.intersection()1 MISSING CHECKER if (rcv == null) {} The returning value could be null [6]
2 Iterator<>.next() MISSING CALL Iterator<>.hasNext() Should check if there are sufficient tokens [4], [6]
3 StringTokenizer.nextToken() MISSING CALL StringTokenizer.hasMoreTokens() Should check if there are sufficient tokens [4], [6]
4 Integer.parseInt() MISSING EXCEPTION try {} catch(NumberFormatException) Might throw exceptions [6]
5 Double.parseDouble() MISSING EXCEPTION try {} catch(NumberFormatException) Might throw exceptions [6]
6 PdfArray.getPdfObject()2 INCORRECT CONDITION if (!PdfArray.isEmpty()) {} Should check if the object is empty [6]
7 rcv = SortedMap.firstKey() MISSING CHECKER if (rcv == null) {} The returning value could be null [4], [6]
8 rcv = StrBuilder.getNullText()3 MISSING CHECKER if (rcv == null) {} The returning value could be null [6]

10 MessageDigest.getInstance() MISSING EXCEPTION try {} catch(NoSuchAlgorithmException) Might throw exceptions [56]
12 Matcher.group() MISSING CALL Matcher.find() Required to be used together [57]
25 Iterator.next() REDUNDANT CALL Iterator.remove() Shouldn’t call remove during iteration [6]

1: from library org.apache.commons.math; 2: from library com.itextpdf.text; 3: from library org.apache.commons.lang; the others from Java

explained in the existing study [6] and we do not make further
explanations in this study. MUTAPI is not evaluated on the
crafted setting since the crafted API usage examples are not
equipped with a test suite required for mutation analysis.

As shown in Figure 10, MUTAPI is able to detected 26 out
of the 53 real API misuses. It achieves the highest recall of
0.49. In the practical setting, MUTAPI significantly outper-
forms all the baseline approaches. The second best approach
is DMMC, which achieves a recall of 0.21. GROUPMINER is
unable to detect any API misuses in the benchmark. One of
the major reasons that limit existing approaches in detecting
more API misuses is that the number of usage examples
in the codebase is too small (below the minimal support
values required by existing approaches for pattern mining). For
instance, GROUPMINER [16] detects frequent usage patterns
with a minimum support of 6 and TIKANGA [14] sets the min-
imum support to 20. This means that they require at least 6 or
20 usage examples in the codebase. In the crafted setting, since
more correct usage examples have been added to the codebase
manually, the recall of existing approaches have improved
accordingly. Nonetheless, the results of MUTAPI obtained in
the practical setting still outperform all the baseline approaches
under this crafted setting.

We further investigated the reasons why certain patterns of
API misuse instances cannot be detected by MUTAPI and
found three major types of reasons: no correct API usages,
no mutant coverage and inadequate test suite (see Section
VI-B). We plan to evaluate MUTAPI on more datasets other
than MUBENCH [6] in the future since one threat to validity
of our results here is that the design of our mutation operators
was partially inspired by the study of this benchmark.

C. RQ3:Efficiency and Effectiveness of Mutation Operators
Table VI shows the number of mutants generated by MU-

TAPI and PIT in column #Mutants and #PitMutants, respec-
tively. Note that when generating mutants using PIT, we only
target at those source files that involve usages of our selected
target APIs. As shown in the table, on average, PIT generates

0

0.1

0.2

0.3

0.4

0.5

JADET GroupMiner DMMC TIKANGA MutAPI

Recall#Practical Recall#Crafted

Fig. 10: Recall of MUTAPI and the Baseline Approaches

2.39 times more mutants than MUTAPI. Mutation analysis
is known to be computationally expensive since it needs to
compile the mutants and execute them against the associalted
test suite [58], [59]. As a result, it takes 9.87 minutes for
MUTAPI to finish the analysis per project on average while it
takes 20.93 minutes for conventional mutation operators.

We fed the mutants generated by PIT and the associated
killing relations to MUTAPI. We manually checked the Top-
50 ranked results following the same procedure adopted in
RQ1. Figure 11 shows the number of real API misuse patterns
(i.e., true positives) detected by PIT. In total, PIT is only able
to detect 5 true positives of the type incorrect condition and
missing call. This is because that the conventional mutation
operators focus on mutating arithmetic and conditional oper-
ators [27], which mostly result in assertion errors general to
all client projects. Therefore, it is hard to leverage them to
distill real API misuses. The conventional mutation operators
also mutate conditions (e.g., forcing conditions to ture or
false) and remove void method calls. This explains why PIT
discovers five real API misuses.

These results demonstrate that our proposed mutation opera-
tors are more effective and efficient in discovering API misuse
patterns than conventional ones, which reflect the need to
propose domain-specific mutation operators for the discovert
of API misuse patterns. Figure 11 also shows the distributions
of different types of misuse patterns that are detected by
MUTAPI. It indicates that missing checker, missing exception
and missing call are the most frequently ones. This is in line
with the findings of existing studies [4], [6].

VI. DISCUSSIONS

A. Effects of the Number of Applied Mutation Operators
MUTAPI can apply N mutation operators when generating

mutants (see Algorithm 1). By default, N is set to 1. The effect
of the maximum number of mutation operators can be applied
on the effectiveness of MUTAPI is unknown. We investigate
such effects in this subsection.

0
2
4
6
8
10
12
14

MISSING
CHECKER

MISSING
EXCEPTION

INCORECT
CONDITION

MISSING
CALL

REDUDANT
CALL

MutAPI PitMutant

Fig. 11: The Number of True API Misuse Patterns Detected by
MUTAPI and PIT among the Top 50 Results

Figure 12 shows the number of mutants generated when N
is set to 1 to 5. We can see that, the number of generated
mutants significantly grows with the increase of N . Thus,
it becomes more expensive to conduct mutation analysis.
However, we observe that the number of the unique failing
stack traces increases marginally as N grows. For instance,
the total number of unique stack traces is 543 when N=1. The
number only increases by 5 when N=2, while the number of
mutants increases by 20, 501 in total for the 16 client projects.
This indicates that applying a single mutation operator is
sufficient to discover most of the error spaces (i.e., in the form
of failing stack traces) for exposing library misuses.
B. Limitations of MUTAPI

There are three major reasons that hinder MUTAPI to
discover misuse patterns for a target API.

No correct usages. If there are no correct usages of
the target API in the input client projects, MUTAPI cannot
discover the corresponding misuses via mutation analysis. For
example, in our experiments, we found that there are no correct
usages for API org.kohsuke.args4j.api.Parameters.
getParameter() in all the 16 client projects. We did not
pick additional projects that have correct usages of this API
in order to guarantee the generality of our results and findings.
Thus, MUTAPI did not discover any misuse patterns for
this API. Existing approaches also suffer from this limitation
as discussed before, and, even worse, they require a larger
number of correct usages than our approach.

No mutant coverage. We observe that certain API misuse
patterns require specific values that can not be discovered by
our approach. For instance, javax.crypto.Cipher("DES")
is a misuse since it should not be used with the DES mode
[60]. However, MUTAPI only searches from the same source
file in order to find appropriate code elements when replacing
parameters or conditions. As a result, if there is no string
“DES” in the same source file, MUTAPI cannot create a mutant
which represents this API misuse. Similar cases are observed
for other APIs such as String.getBytes().

Inadequate test suite. The effectiveness of MUTAPI is
subject to the quality of the associated test suite. Even if MU-
TAPI has generated a mutant that represents a real API misuse,
it still has no chance to detect the misuse if the associated
test suite cannot kill the mutant. For example, for the misuse
of API StatisticalCategoryDataset.getDtDevValue()
in MUBENCH, MUTAPI successfully created a mutant that
mimicked a misuse. Unfortunately, it could not be killed by the
associated test suite. As a result, the misuse pattern cannot be
detected. For other I/O related APIs, such as InputStream()
or File.open(), missing method call File.close() is a
common type of misuse. However, mutants representing such

103

103.5

104

104.5

105

N=1 N=2 N=3 N=4 N=5

T
he

 N
um

be
r

of
 M

ut
an

ts

Fig. 12: The Number of Mutants Generated with Different N

misuses can hardly be killed by the test suite. The reason is that
such misuses are likely to induce performance issues. The test
cases of client projects are rarely equipped with a proper oracle
to identify such issues. Nonetheless, our empirical results
(Section V-A) already confirm that a large number of real API
misuse patterns can be detected via mutation analysis.
C. Threats to Validity

The validity of our study is subject to the following threats.
First, our study is limited to 73 Java APIs, and thus the gen-
erality to other APIs might be a threat. However, these APIs
are popular (i.e., frequently discussed in Stack Overflow [4])
and systematically evaluated by existing studies [6]. Therefore,
we believe that they are representative Java APIs. Performing
experiments using more Java APIs is left as our future work.
Second, our experiments involve only 16 client projects, and
thus the results might not be generalizable to other projects.
However, these projects are randomly selected based on the
criteria described in Section IV-B. They are popular and from
diverse domains. It is also worth mentioning that these projects
only cover 55 of the 73 selected APIs. We did not purposely
select more projects to cover the remaining 18 APIs in order
to ensure the generality of our experiments.

VII. CONCLUSION AND FUTURE WORK
We present MUTAPI in this study, the first approach that

leverages mutation analysis to discover API misuse patterns. It
offers two major benefits compared with existing approaches.
First, it does not require a large number of correct API usage
examples. Therefore, it can be applied to detect misuse pat-
terns of newly released APIs, whose number of usages might
be limited, while existing approaches are less likely to work in
such scenarios. Second, it goes beyond the simple assumption
that a deviation from the most frequent patterns is a misuse.
Existing approaches suffer from low precision due to such an
assumption. We applied MUTAPI on 16 client projects with
respect to 73 popular APIs. The results show that MUTAPI is
able to detect substantial API misuse patterns. It also achieves
a recall of 0.49 on the MUBENCH benchmark dataset [6],
which significantly outperforms existing approaches.

In future, we plan to apply MUTAPI to those less frequently
used APIs (e.g., those from newly released libraries) instead
of popular ones to investigate whether MUTAPI can detect
unknown API misuse patterns. We also plan to systematically
investigate the effects of the test suite’s quality on the effec-
tiveness of our approach.

ACKNOWLEDGMENT
We thank Tianyi Zhang for his discussions toward this idea

and anonymous reviewers for their constructive comments.
This work was supported by the Hong Kong RGC/GRF Grant
16202917, the MSRA Collaborative Research Award, the GPU
Grant Program by NVIDIA, the National Natural Science
Foundation of China (Grant No. 61802164), the Science and
Technology Innovation Committee Foundation of Shenzhen
(Grant No. ZDSYS201703031748284) and the Program for
University Key Laboratory of Guangdong Province (Grant No.
2017KSYS008). Zhendong Su was supported in part by United
States NSF Grants 1528133 and 1618158.

REFERENCES

[1] Y. Wang, M. Wen, Z. Liu, R. Wu, R. Wang, B. Yang, H. Yu, Z. Zhu,
and S.-C. Cheung, “Do the dependency conflicts in my project matter?”
in Proceedings of the 2018 26th ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2018). ACM, 2018, pp. 1–12.

[2] “Maven repository,” https://maven.apache.org/, 2018, accessed: 2018-
02-28.

[3] U. Dekel and J. D. Herbsleb, “Improving api documentation usability
with knowledge pushing,” in Proceedings of the 31st International
Conference on Software Engineering. IEEE Computer Society, 2009,
pp. 320–330.

[4] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim, “Are
code examples on an online q&a forum reliable?: a study of api misuse
on stack overflow,” in Proceedings of the 40th International Conference
on Software Engineering. ACM, 2018, pp. 886–896.

[5] L. Seonah, R. Wu, S.-C. Cheung, and S. Kang, “Automatic detection
and update suggestion for outdated api names in documentation,” IEEE
Transactions on Software Engineering, 2019.

[6] S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “A
systematic evaluation of static api-misuse detectors,” IEEE Transactions
on Software Engineering, 2018.

[7] M. Monperrus and M. Mezini, “Detecting missing method calls as viola-
tions of the majority rule,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 22, no. 1, p. 7, 2013.

[8] J. Sushine, J. D. Herbsleb, and J. Aldrich, “Searching the state space: a
qualitative study of api protocol usability,” in Proceedings of the 2015
IEEE 23rd International Conference on Program Comprehension. IEEE
Press, 2015, pp. 82–93.

[9] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith, “Why eve and mallory love android: An analysis of android
ssl (in) security,” in Proceedings of the 2012 ACM conference on
Computer and communications security. ACM, 2012, pp. 50–61.

[10] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in android applications,” in Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 2013, pp. 73–84.

[11] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: validating ssl
certificates in non-browser software,” in Proceedings of the 2012 ACM
conference on Computer and communications security. ACM, 2012,
pp. 38–49.

[12] Z. Li and Y. Zhou, “Pr-miner: automatically extracting implicit program-
ming rules and detecting violations in large software code,” in ACM
SIGSOFT Software Engineering Notes, vol. 30, no. 5. ACM, 2005, pp.
306–315.

[13] C. Lindig, “Mining patterns and violations using concept analysis,” in
The Art and Science of Analyzing Software Data. Elsevier, 2016, pp.
17–38.

[14] A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting object usage
anomalies,” in Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering. ACM, 2007, pp. 35–44.

[15] M. K. Ramanathan, A. Grama, and S. Jagannathan, “Static specification
inference using predicate mining,” in ACM SIGPLAN Notices, vol. 42,
no. 6. ACM, 2007, pp. 123–134.

[16] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen, “Graph-based mining of multiple object usage patterns,” in
Proceedings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering. ACM, 2009, pp. 383–392.

[17] M. Acharya and T. Xie, “Mining api error-handling specifications from
source code,” in International Conference on Fundamental Approaches
to Software Engineering. Springer, 2009, pp. 370–384.

[18] S. Thummalapenta and T. Xie, “Mining exception-handling rules as se-
quence association rules,” in Proceedings of the IEEE 31st International
Conference on Software Engineering, 2009. IEEE, 2009, pp. 496–506.

[19] ——, “Alattin: Mining alternative patterns for detecting neglected condi-
tions,” in Proceedings of the 2009 IEEE/ACM International Conference
on Automated Software Engineering. IEEE Computer Society, 2009,
pp. 283–294.

[20] A. Wasylkowski and A. Zeller, “Mining temporal specifications from
object usage,” Automated Software Engineering, vol. 18, no. 3-4, pp.
263–292, 2011.

[21] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE transactions on software engineering, vol. 37,
no. 5, pp. 649–678, 2011.

[22] P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2016.

[23] S. Hong, B. Lee, T. Kwak, Y. Jeon, B. Ko, Y. Kim, and M. Kim,
“Mutation-based fault localization for real-world multilingual programs
(t),” in Proceedings of the 30th IEEE/ACM International Conference on
Automated Software Engineering. IEEE, 2015, pp. 464–475.

[24] T. Loise, X. Devroey, G. Perrouin, M. Papadakis, and P. Heymans,
“Towards security-aware mutation testing.” in ICST Workshops, 2017,
pp. 97–102.

[25] T. Mouelhi, Y. Le Traon, and B. Baudry, “Mutation analysis for
security tests qualification,” in Testing: Academic and Industrial Confer-
ence Practice and Research Techniques-MUTATION, 2007. TAICPART-
MUTATION 2007. IEEE, 2007, pp. 233–242.

[26] B. Baudry, F. Fleurey, and Y. Le Traon, “Improving test suites for
efficient fault localization,” in Proceedings of the 28th international
conference on Software engineering. ACM, 2006, pp. 82–91.

[27] “Pit,” http://pitest.org/quickstart/mutators/, 2018, accessed: 2018-02-28.
[28] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim, “Crashlocator: locating

crashing faults based on crash stacks,” in Proceedings of the 2014
International Symposium on Software Testing and Analysis. ACM,
2014, pp. 204–214.

[29] W. Ying, W. Ming, W. Rongxin, L. Zhenwei, T. Shin Hwei, Z. Zhiliang,
Y. Hai, and C. Shing-Chi, “Could I Have a Stack Trace to Examine the
Dependency Conflict Issue?” in Proceedings of the 41th International
Conference on Software Engineering. IEEE, 2019.

[30] I. Ahmed, C. Jensen, A. Groce, and P. E. McKenney, “Applying mutation
analysis on kernel test suites: an experience report,” in IEEE Inter-
national Conference on Software Testing, Verification and Validation
Workshops (ICSTW). IEEE, 2017, pp. 110–115.

[31] C. S. Timperley, S. Stepney, and C. Le Goues, “An investigation into the
use of mutation analysis for automated program repair,” in International
Symposium on Search Based Software Engineering. Springer, 2017, pp.
99–114.

[32] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware
patch generation for better automated program repair,” in Proceedings
of the 40th International Conference on Software Engineering, ser.
ICSE ’18. New York, NY, USA: ACM, 2018, pp. 1–11. [Online].
Available: http://doi.acm.org/10.1145/3180155.3180233

[33] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“You get where you’re looking for: The impact of information sources
on code security,” in Proceedings of the IEEE Symposium on Security
and Privacy. IEEE, 2016, pp. 289–305.

[34] “Apache lang,” https://github.com/apache/commons-lang.git, 2018, ac-
cessed: 2018-02-28.

[35] M. Weiser, “Program slicing,” in Proceedings of the 5th international
conference on Software engineering. IEEE Press, 1981, pp. 439–449.

[36] M. Linares-Vásquez, G. Bavota, M. Tufano, K. Moran, M. Di Penta,
C. Vendome, C. Bernal-Cárdenas, and D. Poshyvanyk, “Enabling mu-
tation testing for android apps,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. ACM, 2017, pp.
233–244.

[37] K. Moran, M. Tufano, C. Bernal-Cárdenas, M. Linares-Vásquez,
G. Bavota, C. Vendome, M. Di Penta, and D. Poshyvanyk, “Mdroid+:
a mutation testing framework for android,” in Proceedings of the
40th International Conference on Software Engineering: Companion
Proceeedings. ACM, 2018, pp. 33–36.

[38] R. Jabbarvand and S. Malek, “µdroid: an energy-aware mutation testing
framework for android,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering. ACM, 2017, pp. 208–219.

[39] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2014, pp. 654–665.

[40] “Apache category,” https://projects.apache.org/projects.html?category,
2018, accessed: 2018-02-28.

[41] “Github topics,” https://github.com/topics, 2018, accessed: 2018-02-28.
[42] “Apache fop,” https://github.com/apache/fop.git, 2018, accessed: 2018-

02-28.
[43] “Swingx,” https://github.com/ebourg/swingx.git, 2018, accessed: 2018-

02-28.

https://maven.apache.org/
http://pitest.org/quickstart/mutators/
http://doi.acm.org/10.1145/3180155.3180233
https://github.com/apache/commons-lang.git
https://projects.apache.org/projects.html?category
https://github.com/topics
https://github.com/apache/fop.git
https://github.com/ebourg/swingx.git

[44] “Jfreechart,” https://github.com/jfree/jfreechart.git, 2018, accessed:
2018-02-28.

[45] “itextpdf,” https://github.com/itext/itextpdf.git, 2018, accessed: 2018-02-
28.

[46] “Apache math,” https://github.com/apache/commons-math.git, 2018, ac-
cessed: 2018-02-28.

[47] “Apache text,” https://github.com/apache/commons-text.git, 2018, ac-
cessed: 2018-02-28.

[48] “Apache bcel,” https://github.com/apache/commons-bcel.git, 2018, ac-
cessed: 2018-02-28.

[49] “Fortress core,” https://github.com/apache/directory-fortress-core.git,
2018, accessed: 2018-02-28.

[50] “Santuario-java,” https://github.com/apache/santuario-java.git, 2018, ac-
cessed: 2018-02-28.

[51] “Pdfbox,” https://github.com/apache/pdfbox.git, 2018, accessed: 2018-
02-28.

[52] “Wildfly,” https://github.com/wildfly-security/wildfly-elytron.git, 2018,
accessed: 2018-02-28.

[53] “Apache jackrabbit,” https://github.com/apache/jackrabbit.git, 2018, ac-
cessed: 2018-02-28.

[54] “H2database,” https://github.com/h2database/h2database.git, 2018, ac-
cessed: 2018-02-28.

[55] “Curator,” https://github.com/apache/curator.git, 2018, accessed: 2018-
02-28.

[56] “Messagedigest,” https://stackoverflow.com/questions/16133881/
messagedigest-nosuchalgorithmexception, 2018, accessed: 2018-02-28.

[57] “Matcher group api,” https://stackoverflow.com/questions/25851293/
java-regex-why-matcher-group-does-not-work-without-matcher-find,
2018, accessed: 2018-02-28.

[58] J. Zhang, L. Zhang, M. Harman, D. Hao, Y. Jia, and L. Zhang, “Pre-
dictive mutation testing,” IEEE Transactions on Software Engineering,
2018.

[59] B. Wang, Y. Xiong, Y. Shi, L. Zhang, and D. Hao, “Faster mutation
analysis via equivalence modulo states,” in Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis.
ACM, 2017, pp. 295–306.

[60] R. Paletov, P. Tsankov, V. Raychev, and M. Vechev, “Inferring crypto api
rules from code changes,” in Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation.
ACM, 2018, pp. 450–464.

https://github.com/jfree/jfreechart.git
https://github.com/itext/itextpdf.git
https://github.com/apache/commons-math.git
https://github.com/apache/commons-text.git
https://github.com/apache/commons-bcel.git
https://github.com/apache/directory-fortress-core.git
https://github.com/apache/santuario-java.git
https://github.com/apache/pdfbox.git
https://github.com/wildfly-security/wildfly-elytron.git
https://github.com/apache/jackrabbit.git
https://github.com/h2database/h2database.git
https://github.com/apache/curator.git
https://stackoverflow.com/questions/16133881/messagedigest-nosuchalgorithmexception
https://stackoverflow.com/questions/16133881/messagedigest-nosuchalgorithmexception
https://stackoverflow.com/questions/25851293/java-regex-why-matcher-group-does-not-work-without-matcher-find
https://stackoverflow.com/questions/25851293/java-regex-why-matcher-group-does-not-work-without-matcher-find

	Introduction
	Related Work and Preliminaries
	Mutation Analysis
	Library API Misuse Detection
	Observation and Motivation
	Challenges

	MutApi Approach
	Conducting Mutation Testing
	Prioritizing Killing Relations
	Discovering API Misuse Patterns

	Experiment Setup
	Target APIs Selection
	Client Projects Selection
	Research Questions

	Experimental Results
	RQ1:Effectiveness of MutApi
	RQ2:Performance of MutApi on MuBench Benchmark
	RQ3:Efficiency and Effectiveness of Mutation Operators

	Discussions
	Effects of the Number of Applied Mutation Operators
	Limitations of MutApi
	Threats to Validity

	conclusion and future work
	References

