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ABSTRACT

Bug-inducing commits provide important information to under-
stand when and how bugs were introduced. Therefore, they have
been extensively investigated by existing studies and frequently
leveraged to facilitate bug fixings in industrial practices.

Due to the importance of bug-inducing commits in software
debugging, we are motivated to conduct the first systematic empir-
ical study to explore the correlations between bug-inducing and
bug-fixing commits in terms of code elements and modifications. To
facilitate the study, we collected the inducing and fixing commits for
333 bugs from seven large open-source projects. The empirical find-
ings reveal important and significant correlations between a bug’s
inducing and fixing commits. We further exploit the usefulness of
such correlation findings from two aspects. First, they explain why
the SZZ algorithm, the most widely-adopted approach to collecting
bug-inducing commits, is imprecise. In view of SZZ’s imprecision,
we revisited the findings of previous studies based on SZZ, and
found that 8 out of 10 previous findings are significantly affected
by SZZ’s imprecision. Second, they shed lights on the design of
automated debugging techniques. For demonstration, we designed
approaches that exploit the correlations with respect to statements
and change actions. Our experiments on Defects4J show that our
approaches can boost the performance of fault localization signifi-
cantly and also advance existing APR techniques.
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(Southern University of Science and Technology).
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1 INTRODUCTION

Software evolves by means of code changes committed to fix bugs,
introduce new features, refactor existing code and so on. Such com-
mitted code changes, however, can also induce new bugs [28, 31, 54,
69]. Commits that induce software bugs are known as bug-inducing
commits, which embed important information about when and
how bugs are introduced. Due to the importance of bug-inducing
commits, they have been extensively studied by researchers. For
example, various studies have been conducted to understand the
characteristics of bug-inducing commits (e.g., [9, 12, 13, 17, 20, 21,
30, 46, 53]), predict buggy-prone commits during software evolu-
tions (e.g., [10, 23, 28, 31, 33, 43, 52, 67]), and locate bug-inducing
commits (e.g., [32, 54, 62, 64]), and so on. Bug-inducing commits
are also leveraged to ease debugging in industrial practices. Partic-
ularly, we observe that developers from open-source projects often
look for the information of bug-inducing commits when devising
the fixing patches of a bug (see Section 2 for more details).

Exploring the correlations between bug-inducing commits and
bug-fixing commits is important. The reasons are two-fold. First, ex-
isting studies [9, 12, 13, 17, 20, 21, 28, 30–32, 46, 53, 54, 57, 62, 64, 69]
mostly leveraged the SZZ algorithm [54] and its variants [18, 19, 32]
to infer bug-inducing commits based on bug-fixing commits, with
an implicit assumption that bug-inducing and bug-fixing commits
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are highly correlated in the code hunks (e.g., modifying the same
code elements). To ease presentation, we refer to these approaches
[18, 19, 32, 54] as “SZZ” and the implicit assumption as “SZZ assump-
tion”. While the SZZ assumption plays a critical role in previous
studies, it has not been systematically validated in practice. Un-
examined assumptions can result in questionable research claims
and wasted research effort [47]. Second, although bug-inducing
commits provide contextual clues for debugging in practice (see
Section 2), the way to leverage them effectively for debugging is not
well studied. Understanding the correlations between bug-inducing
and bug-fixing commits is a fundamental step towards this target,
enabling us to design better automatic debugging techniques.

Although several existing studies [15, 62] have explored certain
correlations between a bug’s inducing commits and fixing commits,
their findings mainly focused on the metadata (e.g., the authorship
of a commit [62]) or the metrics of commits (e.g., the complexity
of the committed code hunks [15]). Unfortunately, these findings
are insufficient to answer the questions on the validity of the SZZ
assumption and provide few guidance on the applications of bug-
inducing commits in bug fixing. Therefore, in this work, we propose
to study the correlations between bug-inducing and bug-fixing
commits in terms of code elements and modifications. Specifically,
we investigate the following research question:

RQ1: Do bug-inducing commits and bug-fixing commits modify
the same code elements (e.g., source files, statements), and do they
involve similar change actions?

Here, change actions refer to the code modifications made to
a program such as inserting an if statement. Inferring change ac-
tions (a.k.a., mutation operators) is an important step in designing
automated program repair (APR) techniques [26, 34, 41, 49, 61].

To answer RQ1, we created a benchmark dataset containing
the information of bug-inducing commits and the associated bug-
fixing commits. Specifically, we analyzed substantial bug reports
from large open-source projects and manually recovered the links
between the inducing and fixing commits for hundreds of bugs.
Studying RQ1 offers benefits in two aspects.

First, as above-mentioned, many existing studies (e.g., [21, 62,
69]) leveraged SZZ to collect bug-inducing commits. Unfortunately,
recent studies have pointed out that SZZ suffers from a low preci-
sion [15, 18]. However, neither of these studies explained why SZZ
is imprecise nor investigated the effect of such imprecision on the
findings of existing studies, because SZZ’s underlying assumption
has not been systematically validated. The answers to RQ1 together
with our benchmark enable us to validate the SZZ assumption and
further answer the following question.

RQ2: What are the major causes for the imprecision in SZZ?
Does such imprecision result in a significant bias in the findings
made by previous studies?

Second, the answers to RQ1 can shed lights on the design of bet-
ter automated debugging techniques. For instance, if the statements
modified by a bug’s fixing commits and inducing commits are corre-
lated, we can leverage a bug’s inducing commits to better infer the
program locations that need to be modified to fix faults (fault local-
ization, or FL in abbreviation). If the change actions performed to
fix a bug are correlated with those actions that introduced the bug,
we can better infer the required mutation operators when devising

automated program repair tools. To investigate the feasibility of
these ideas, we further study the third research question:

RQ3: Can bug-inducing commits and our findings be leveraged
to advance existing automated debugging techniques?

To answer RQ3, we recovered the bug-inducing commits of 91
bugs in Defects4J [27] via bisect testing on version histories fol-
lowing the strategy adopted by an existing study [15]. Driven by
the answers of RQ1, we devise novel debugging approaches incor-
porating the information of bug-inducing commits and compare
them with the state-of-the-art techniques.

Via studying the three RQs, we obtained several major findings:
(1) Software bugs can be fixed in a source file but introduced in

another due to different reasons such as faulty configurations,
incomplete changes and so on (Section 3.2.1).

(2) Around 64.6% of the statements modified by the bug-fixing
commits were also modified by the associated bug-inducing
commits, and the ratio can be enhanced to 71.1% if data-flow
and control-flow analyses are performed (Section 3.2.1).

(3) The majority of the change actions that are required to fix
bugs can be inferred via reverting those change actions made
in the corresponding bug-inducing commits (Section 3.2.2).

(4) Previous findings have been significantly affected by the
biased bug-inducing commits identified by SZZ. Specifically,
significant differences and non-negligible effect sizes have
been observed for 8 out of 10 previous findings (Section 4).

(5) The information of bug-inducing commits can boost the per-
formance of automated debugging techniques significantly.
Based on the evaluations onDefects4J, we found that our FL
approach can significantly outperform existing ones (around
100% improvement in terms of MAP and MRR) (Section 5).

This paper’s contributions and organization are as follows:
(1) We created a benchmark dataset containing the bug-inducing

and bug-fixing commits for 333 bugs from seven large open-
source projects. The dataset is publicly available and can
facilitate future research (Section 2).

(2) We conducted empirical studies based on the collected dataset.
The results reveal significant correlations between a bug’s
inducing and fixing commits (Section 3).

(3) We analyzed SZZ and revisited previous findings based on
bug-inducing commits identified by SZZ (Section 4).

(4) We devised approaches exploiting the correlations revealed
by our studies and evaluated them on Defects4J. Results
show that these approaches are promising to advance exist-
ing automated debugging techniques (Section 5).

2 DATASET CONSTRUCTION

2.1 Data Collection

Characterizing and understanding the correlations between bug-
inducing commits and bug-fixing commits require a vast collection
of these commits for real bugs. However, the information of a bug’s
inducing commits is rarely available, and there is no large dataset
in public. Böhme et al. [15] identified the bug-inducing commits
via software testing for only 70 bugs from four subsystems (make,
grep, findutils and coreutils) of GNU project. Due to the
requirement of bug-revealing tests, their approach to collecting
bug-inducing commits is difficult to generalize since bug-revealing
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Table 1: The Benchmark Dataset Collected in This Study

Project Description #Stars #Files KLOC #Changes Major Critical Blocker Minor Trivial #Bugs #BIC #BFC
Accumulo Data Storage and Retrieval 431 2,078 661 9,741 10 4 14 4 1 33 53 36
Ambari System Administrators for Hadoop 788 3,267 132 22,800 11 8 12 0 0 31 36 38
Lucene Text Search Engine Library 1,477 7,776 375 29,608 42 6 9 12 0 69 144 71
Hadoop Distributed System 6,185 10,892 555 18,032 29 11 10 1 2 53 57 53
JackRabbit Content Repository Management 202 3,158 132 8,571 24 0 2 7 0 33 66 42
Oozie Web Services for Hadoop 444 1,373 278 2,224 24 6 11 3 0 44 49 45
CoreBench Projects from GNU Operating System ∼ 2,317 146 33,433 ∼ ∼ ∼ ∼ ∼ 70 70 70
Summary 9,527 30,861 2,279 124,409 140 35 58 27 3 333 475 355
#BFC denotes the number of bug-fixing commits; #BIC denotes the number of bug-inducing commits; ∼ means the data is not available

tests are rarely provided in bug reports. An alternative is to collect
bug-inducing commits that are flagged by domain experts (i.e., the
corresponding developers) as pointed out by a recent study [18].
Fortunately, we found that many developers of large open-source
projects (e.g., those from the Apache ecosystem) often leave the
messages of their debugging activities in bug reports, and those
messages might contain the information of bug-inducing commits.
We show two examples of such messages as follows:

“I’m fairly certain this is caused by the enhancements made in
SOLR-1297 to add sorting functions” [6]

“This is an unintended bug introduced by commit #bc56c03” [2]
We also observed that developers often conduct software testing

to find the bug-inducing commits.
“The test passes before this commit (LUCENE-6758) and fails after”[7]
Such information provided by the domain experts enables us to

identify the bug-inducing commits precisely for software bugs, and
thereby to create a ground-truth dataset. In this study, we adopted
the following three steps to build our dataset.

In the first step, we analyzed bugs’ associated reports, and col-
lected those candidates of bugs that potentially contain the infor-
mation of bug-inducing commits. Specifically, we collected a bug as
a candidate if it satisfies one of the following two conditions. First,
we checked whether a bug’s report has the specific attribute which
indicates that other issues introduced this bug. For example, JIRA
records such information in the field of “is broken by” under the
category of “Issue Links”. Second, we examined the description and
comments of the bug reports via keyword searching. Specifically,
we used the following regular expression:
(started with|caused by|introduced by|commit).*?(r*(\w){6,41}|PROJECT-(\d){3,7})

By manually checking a portion of bug reports that are sampled
randomly, we observed that developers from Apache often used
keywords “started with”, “caused by”, “commits” and “introduced by”
to deliver the information of bug-inducing commits. Expression
(r*(\w){6,41}) matches the hash ID of a commit directly. Expres-
sion (PROJECT-(\d){3,7}) matches an issue ID where PROJECT
refers to the concerned project. For example, LUCENE-6758 is an
issue ID for the project Lucene. A bug is collected as a candidate if
its descriptions or comments match the regular expression.

In the second step, we manually examined all the candidates to
ensure the data quality. We found that the candidates such identi-
fied in the first step might contain noises. For instance, a matched
comment “The problem is caused by stack overflow in SOLR-6213 [5]”
might be a noise and thus has been filtered out. This is because
we were unsure whether the bug was caused by the commits to fix
SOLR-6213 or it was just caused by the same stack overflow prob-
lem similar to issue SOLR-6213. Similar candidates were filtered

out. Two PhD students were involved in the manual checking. A
candidate bug was discarded, if any one of them was unsure that
the matched texts indeed deliver the information of the commits
that introduced the bug.

In the third step, we built the links between bugs and the associ-
ated bug-fixing commits following the practices adopted by existing
studies [38, 60, 65]. This step served two purposes. First, we used
these links to identify the bug-fixing commits for all the collected
bugs. Second, since some bug reports may contain indirect infor-
mation of the bug-inducing commits, i.e., a pointer to another issue
whose fixing commits introduced this bug, we resolved such indi-
rect information using the built links. Therefore, we built the links
between issues and commits by matching the issue ID in the com-
mits’ log messages. A candidate was discarded if such links cannot
be recovered via referring to the unified format PROJECT-ISSUE
as mentioned before. Even if the link can be successfully recovered,
the identified bug-fixing commits might still contain noises since
the tangling issue of commits is prevalent as revealed by existing
studies [24, 25]. For such cases, the code changes made in the fixing
commits might not all be related to the bug, and such noises will pre-
vent us from understanding the correlations between the inducing
and fixing commits of a bug correctly. Therefore, we further manu-
ally checked each fixing commit via investigating its log messages
to see if it serves for multiple purposes (a.k.a., non-atomic) besides
fixing the bug. For instance, commit #4f9c470 of Lucene serves to
fix multiple issues (i.e., LUCENE-4796 and LUCENE-4373). Commit
#5e0f6a4 of Accumulo serves seven agendas as indicated by its log
messages. Candidates with non-atomic bug-fixing commits have
been discarded to control the data quality of our empirical study.

Rigorous strategies have been adopted in these three steps to col-
lect the information of bug-inducing and bug-fixing commits. The
reason is that our goal in this study is to collect a bug’s inducing and
fixing commits with high confidence to avoid bias in our empirical
studies. We did not intend to collect the bug-inducing commits for
all bugs in this study. In total, we analyzed all the bug reports from
six popular large open-source projects (i.e., Hadoop, Lucene, Am-
bari, JackRabbit, Accumulo and OOZIE) and successfully identified
the bug-inducing commits for 263 bugs. We also analyzed the bug
reports for other large-scale open-source projects such as Spark,
Struts and Tomcat. However, the number of bug-inducing commits
successfully identified after manually checking was less than 20 for
each project. This falls short of the minimum of 20 instances for
the statistically significance tests [16] in our subsequent empirical
studies. Therefore, we did not include those projects in this study.

Note that our collected bugs contain but are not limited to re-
gression bugs. For example, bug SOLR-2606 is not a regression
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bug, which is introduced by code changes made to add new fea-
tures [6]. We also included the benchmark dataset collected by
Böhme et al.[15], which contains the information of bug-fixing and
bug-inducing commits for 70 bugs from the GNU project.

The descriptions of the selected seven projects, including 333
bugs in total, are listed in Table 1. These projects are popular (i.e.,
with over 200 stars in GitHub) and large-scale (i.e., over 1,000 source
files and over 2,000 commits). Our collected dataset is publicly avail-
able1. Note that there might be multiple bug-inducing commits for
a bug. For example, there are in total 57 bug-inducing commits for
the 53 bugs of project Hadoop. Previous studies have also revealed
that a bug might be jointly introduced by multiple changes [14].

2.2 Threats to Validity

Collection of bug-inducing commits: The major threat of this
study comes from the dataset used in our empirical analysis. That
is, whether the bug-inducing commits identified as oracles truly in-
troduced the corresponding bugs and whether all the bug-inducing
commits have been identified for a bug. We addressed this threat
from two aspects. First, we collected the data of bug-inducing com-
mits based on the knowledge from domain experts (i.e., the devel-
opers assigned to the bug). This data collection methodology has
been suggested by a recent study [18]. Besides, each candidate was
manually checked involving two graduate students and potential
noises have been filtered out following strict rules. Second, we also
included a benchmark dataset (i.e., CoreBench [15]) in our empirical
study. The bug-inducing commits in CoreBench were collected via
software testing, and thus were validated to be real bug-inducing
commits. More importantly, the empirical analysis results derived
from our collected dataset are consistent with those derived from
CoreBench (see Section 3 and 4). The consistency confirms the high
quality of our collected dataset.
Missing links of bug fixes: The links between bugs and the corre-
sponding fixing commits need to be recovered in this study. The bias
of such links have been pointed out and systematically evaluated
by an earlier study [11]. To mitigate such threat, we chose those
projects that are well-maintained and whose bug-tracking systems
are maintained by JIRA. For these projects, developers often leave
the issue ID following a unified format (e.g., PROJECT-ISSUE) in
the log messages of a commit for the issues that it has resolved [18].
Those bugs without such links are excluded from our study.

3 EMPIRICAL INVESTIGATION

In this section, we investigate the correlations between bug-fixing
commits and the bug-inducing commits at the code level. Specifi-
cally, we aim at answering the following two research questions:

RQ1#A: Do bug-fixing commits modify the source files

and statements that aremodified by bug-inducing commits?

Inferring the code elements (e.g., source files and statements)
that are required to be modified in order to fix a bug is critical in
debugging, especially for fault localization and automated program
repair [26, 35, 45, 49, 61, 62, 66]. Existing studies often infer such
code elements based on the information of a program’s current
version [61], such as the test coverage information collected via
executing the test suite against the current program. As mentioned

1Data available at: https://github.com/justinwm/InduceBenchmark

earlier in Section 2, developers often identify the information of bug-
inducing commits during debugging. Such practice provides a new
direction for debugging in terms of version histories other than a
program’s current version. Therefore, in this RQ, we investigate the
correlation between bug-fixing commits and bug-inducing commits,
in terms of the modified source files and statements.

RQ1#B: Do bug-fixing commits perform similar change

actions compared with those by the bug-inducing commits?

Inferring the change actions (i.e., mutation operators) that are
needed to fix a bug is critical in designing automated program
repair techniques [26, 34, 41, 49, 61]. A change action is represented
as a pair of ⟨Operation, Node⟩ [41, 61]. There are four kinds of
operation, which are Change, Add, Delete and Move. The Node
represents the type of the changed AST node. We keep all but
those types referring to non-source code changes (e.g., modification
of JavaDoc). In total, 84 out of 96 distinct node types defined by
JDT are kept. The strategy widely adopted by existing studies to
infer frequent change actions is to learn from substantial real bug
fixes collected from open-source projects [41, 61]. In this RQ, we
investigate whether such change actions can be directly inferred
from a bug’s inducing commits.

To ease our explanation, let b denote a bug collected in our
dataset, Fb denote the set of the corresponding bug-fixing commits,
and Ib denote the set of the corresponding bug-inducing commits.

3.1 Methodology and Measurement

Measuring File Coverage: To answer RQ1#A in terms of source
files, we investigate how many source files that are modified by the
bug-fixing commits are modified by the associated bug-inducing
commits. Specifically, suppose SFb denotes all the source files mod-
ified by the bug b’s fixing commits Fb , and SIb denotes those by b’s
inducing commits. We measure the file coverage as follows:

F ile Coveraдe(b) = |SIb ∩ SFb |/ |SFb | (1)
Measuring Statement Coverage: To answer RQ1#A in terms of
statements, we investigate how many statements that are modified
by the bug-fixing commits are introduced by or evolved from the
associated bug-inducing commits. However, the real bug-inducing
commits Ib might be checked in a long time before the bug-fixing
commits Fb , and thus the lines of source code might be misaligned
between Ib and Fb . For example, a statement at line 90 modified by
Ib might be evolved to line 98 in Fb . Therefore, directly checking the
overlap of changed statements between Ib and Fb is inappropriate.
We adopt the following strategy to resolve this challenge, which
maps the code modified in the bug-inducing commits to the one in
the version before the bug-fixing commits are submitted.

For each bug-inducing commit ib ∈ Ib , suppose Lib is the set
of all its modified statements, we track the evolution history of
these statements from ib to each bug-fixing commit fb ∈ Fb to
see if these statements can be mapped to the statements modified
by any of the bug-fixing commits. Let us further suppose the ver-
sion history is ⟨v1, ...,vj ,vj+1, ...,vn⟩, wherev1 is the version after
bug-inducing commit ib and vn is the version before the fixing
commit fb . For each pair of two consecutive versions ⟨vj ,vj+1⟩,
we use the function Mj 7→j+1(s) to retrieve the statement in vj+1
that is mapped from the statement s in vj . To find the optimum
mappings of Mj 7→j+1(s), we follow an existing work of history
slicing [50] and approach it as the problem of finding the minimum
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matching of a weighted bipartite graph. The weight between any
two statements is computed as their Levenshtein Edit Distance [36].
Our ultimate goal is to obtainM17→N (s), which finds the statement
in vn that is traced from the statement s in v1. Using the function
Mj 7→j+1(s) for each two consecutive versions, we can gradually cal-
culateM1 7→N (s) =MN−1 7→N ◦MN−2 7→N−1 ◦ ...◦M1 7→2(s). Note
that not all statements in v1 can be mapped to vn since some state-
ments might be deleted during evolution and the mapping function
will return null for such cases. Using the function M1 7→N , we
can successfully map the modified statements by the bug-inducing
commit to statements in the version before the bug-fixing commit
is made. We then examine whether the mapped statements in vn
have been further modified by the subsequent bug-fixing commits.

For a bug b, we use LFb to denote all the modified statements
by Fb , and LIb to denote all the statements introduced by Ib . We
use LI Fb to denote those statements mapped from the bug-inducing
commits to the bug-fixing commits. Specifically,LI Fb = {M17→N (s),
∀s ∈ LIb }. We then compare LFb with LI Fb to see how much they
overlap, which is denoted and computed as follows.

Statement Coveraдe(b) = |LI Fb ∩ LFb |/ |LFb | (2)
For those overlapped statements, we further examine whether

these statements have been modified by any other commits. The
reason is that we want to understand whether the bug-fixing state-
ments are directly modified by those statements that introduced
the bug. Specifically, we compute the direct coverage ratio, which
is the ratio of the statements that are modified by the bug-fixing
commits and can be directly traced from the statements introduced
in bug-inducing commits, as follows:

Statement Direct Coveraдe(b) = |LDCb |/ |LFb | (3)
where LDCb = {s : s ∈ LI Fb ∩ LFb and s has not been modified by
other commits between Ib and Fb }.
Measuring Change Action Coverage: To answer RQ1#B, we
leverage GumTree [22] to conduct change analysis for all com-
mits in Ib and Fb . For each commit, we can obtain a set of change
actions, each of which is denoted as a pair ⟨Operation, Node⟩ as
mentioned before. We use AFb to denote all the change actions
extracted from the bug b’s fixing commits Fb , and AIb to denote
the change actions extracted from b’s inducing commits. We then
measure the change action coverage as follows:

Action Coveraдe(b) = |AIb ∩ AFb |/ |AFb | (4)
We also observe that a bug can be repaired via reverting the

actions performed in the bug-inducing commits [3]. For instance,
if the inducing commits inserted a statement, the action performed
to fix the bug might be deleting the statement. Therefore, it moti-
vates us to investigate whether the change actions performed in
the bug-fixing commits can be covered by the inverse change ac-
tions applied in the inducing commits. In particular, the inverse of
⟨Insert, Node⟩ is ⟨Delete, Node⟩ and the inverse of ⟨Delete, Node⟩
is ⟨Insert, Node⟩ accordingly. As for operations of Update and
Move, the inverse actions are themselves. Here, suppose the in-
verse actions ofAIb is denoted as IAIb . We thenmeasure the inverse
coverage of change actions as follows:

Action Inverse Coveraдe(b) = |IAIb ∩ AFb |/ |AFb | (5)

3.2 Empirical Results

3.2.1 RQ1#A: File and Statement Coverage. Figure 1 shows the
results of file coverage for the seven subjects. On average, 73.2%
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Figure 1: File Coverage between Bug-Fixing and Bug-

Inducing Commits

of the source files modified to fix bugs have also been modified by
the associated bug-inducing commits (ranging from 65.6% to 81.5%
across different projects). This result suggests that the majority of
bugs are fixed in the same source files where they are introduced.
However, a non-negligible proportion of bugs still can be fixed in
a source file but introduced in another. We further investigated
those 26.8% of the cases to see why bugs are fixed and induced in
different files, and made the following observations.

Configuration/Log Related (17.9%): One reason that a bug’s
inducing and fixing commits modify different source files is that this
bug relates to configurations or logging statements, an example of
which is shown in Figure 2. In this example, the bug’s inducing com-
mit modified the functionalities in source file NativeMap.java.
In the bug-fixing commits, the configuration related source file
ConfigurableMacBase.java was modified to change settings re-
lated to NativeMap. Since the configuration related source files
usually configure the settings of functionalities implemented in
other source files, the inducing and fixing commits of a configura-
tion related bug might modify different source files. This accounts
for 17.9% of the cases.

Incomplete Changes (14.2%): Another important cause is re-
lated to incomplete changes, in which case developers made required
changes (with respect to fix bugs, add features and etc. ) but forgot
to perform similar necessary changes elsewhere. Figure 3 shows an
example of such case. The bug-inducing commit modified source
file AuthUrlClient.java, which changed the encoding format
to UTF-8. However, it forgot to perform similar changes in source
file DummyLogStreamingServlet.java. The bug-fixing commit
fixed this issue via changing the decoding format to UTF-8. The
case of incomplete changes will be more prevalent if a system con-
tains multiple modules since there might be similar functionalities
implemented in different modules. An update in one module often
requires an update accordingly to similar functionalities in other
modules (e.g., see example of ACCUMULO-2967 [1]).

For the rest of the cases (i.e., 67.9%), no unified patterns can be
observed. However, for the majority of them (i.e., 73.6%, accounting
for 50.0%with respect to the total number), the source files modified
by a bug’s fixing and inducing commit are directly dependent, even
though they are different. For such cases, the classes where the bug
was fixed have directly used those classes where the bug reside
(e.g., superclass and subclass, imported classes and etc.).

Based on the above results, we can distill the following finding:

cfg.setProperty(Property.TSERV_NATIVEMAP_ENABLED,	TRUE.toString());-

+
659a33e8e …/tserver/NativeMap.java

4cffe0290 …/functional/ConfigurableMacBase.java

// STU-VWXTYZWU [\]]Z^

// STU-_Z`ZWU [\]]Z^

String	accumuloNativeLibDirs =	System.getProperty("native.lib.path");

Figure 2: Bug-Inducing and Fixing Commit of ACCUMULO-4674
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lastQueryString = request.getQueryString();
lastQueryString = URLDecoder.decode(request.getQueryString(),	"UTF-8");

stringBuilder.append(value);
stringBuilder.append(URLEncoder.encode(value,"UTF-8"));

-

-
+

+

10549ef2			…/util/AuthUrlClient.java

b5524c90			…/service/DummyLogStreamingServlet.java

// UVW-XYZV[\YW ]^__\`

// UVW-a\b\YW ]^__\`

Figure 3: Bug-Inducing and Fixing Commit of OOZIE-2320

Finding #1. The majority of bugs (73.2%) are fixed in the same
source files as where they were introduced. However, bugs can
be fixed in a source file but introduced in another due to faulty
configurations, incomplete changes and so on. The majority of
source files modified by a bug’s fixing and inducing commit have
directly class dependency even though they are different.

Figure 4 shows the results in terms of statement coverage. For
64.6% of the statements modified by the bug-fixing commits on
average (ranging from 58.7% to 68.8% across different projects),
they were also modified by the associated bug-inducing commits.
The direct coverage is 55.1% on average (ranging from 46.5% to
59.6% for different projects). These results indicate that, for 14.7%
((64.6%-55.1%)/64.6%) of the statements modified by both the bug-
inducing and bug-fixing commits, they were also modified by other
irrelevant commits in between. We further investigate whether
the coverage can be enhanced if those statements affected by bug-
inducing statements are considered. Specifically, we conducted data-
flow and control-flow analysis to slice those dependent statements
based on LI Fb , and then augment LI Fb with those sliced statements.
Statement coverage is then recomputed based on Equation 2, and
the results are shown in Figure 4 (displayed as coverage+flow). The
coverage considering data-flow and control-flow reaches 71.1% on
average, which has been improved by 10.2% compared with the
original coverage. Two major reasons attribute to the incomplete
coverage of statements. First, the source files are not covered for
a portion of bugs. As a result, the modified statements cannot
be covered. Second, we only conducted intra-procedural analysis
to identify data and control dependent statements. However, the
statements modified to fix the bugs might reside outside of the
function where those bug-inducing statements are modified (e.g., in
JavaDoc, other dependent functions or source files). For example,
bug HADOOP-13118 [4] was introduced bymodifications to function
skipFully(). The bug was fixed via updating statements of the
associated JavaDoc. Such statements cannot be retrieved by intra-
procedural data-flow or control-flow analysis.

Based on the these results, we can distill the following finding:
Finding #2. For the statements modified by bug-fixing commits,
64.6% of them can be traced from the statements introduced by the
corresponding bug-inducing commits on average. Such coverage
can be improved to 71.1%, if we consider those statements affected
by (i.e., control or data dependent on) bug-inducing statements.
Finding #1 and Finding #2 shed lights on understanding why the

SZZ algorithm is imprecise [15, 18] (see Section 4). These findings
also provide valuable guidance to advance existing automated FL
techniques. For example, for FL at the source file level, we might
need to refer to those source files that implement similar functionali-
ties, relate to configurations, or those have direct class dependencies.
For FL at the statement level, we can infer the fixing statements

0.00
0.20
0.40
0.60
0.80
1.00

ACCUMULO AMBARI OOZIE HADOOP JCR LUCENE CoreBench
Coverage Direct Coverage Coverage+Flow

Figure 4: Statement Coverage (with Flow Analysis) and Di-

rect Coverage between Bug-Inducing and Fixing Commits

largely from bug-inducing commits, and more statements can be
inferred if we consider data or control dependencies.
3.2.2 RQ2#B: Change Action Coverage. Figure 5 shows the cover-
age and inverse coverage of change actions between a bug’s induc-
ing and fixing commits. The coverage ranges from 28.2% to 70.7%
over different projects, with an average value of 43.1%. The inverse
coverage of change actions ranges from 42.4% to 73.2% with an
average value of 52.6%. These results indicate that around 40.0% of
the change actions performed in the fixing commits can be inferred
from the associated inducing commits, and that value is higher if we
infer from bug-inducing commits’ inverse change actions. We fur-
ther investigated the coverage and inverse coverage for each type
of change action, and Figure 6 shows the results of the top 100 fre-
quently observed change actions averaged over the seven projects.
We can see that for certain change actions (i.e., those displayed at
the leftmost in Figure 6), the inverse coverages are higher than the
direct coverage. This indicates that these change actions are more
likely to be inferred by reverting the change actions observed in
the bug-inducing commits. Examples of such change actions are
⟨Insert, Prefix_Expression⟩ and ⟨Insert, Array_Type⟩. On the con-
trary, for some other change actions (i.e., those displayed at the
rightmost in Figure 6), the direct coverage is higher than the inverse
coverage. Examples of such change actions are ⟨Insert, Initializer⟩
and ⟨Insert, Character_Literal⟩. Based on the above results, we can
distill the following finding:
Finding #3. Around 43.1% of the change actions used to fix bugs
can be inferred from change actions that introduced the bug, and
52.6% of them can be inferred via reverting the change actions
performed in bug-inducing commits. Besides, some change ac-
tions performed in bug-inducing commits are more likely to be
directly applied to fix bugs while some others are more likely to
be reverted.
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Figure 5: Change Action Coverage Between Bug-Fixing and

Bug-Inducing Commits. The Green Bar Denotes Cover-

age and the White Bar Denotes Inverse Coverage
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lastQueryString = request.getQueryString();
lastQueryString = URLDecoder.decode(request.getQueryString(),	"UTF-8");

39
b5524c90						30	Jan,	2015Git	Blame#128d7d20			30	Aug,	2013

Commits identified	by	SZZ

#b5524c90			30	Jan,	2015

#	10549ef2			27	Jan,	2015
Real	Bug-Inducing	Commits

Introduced	the	source	file
…/service/DummyLogStreamingServlet.java

Figure 7: Identifying the Bug-Inducing Commits of OOZIE-2320 by SZZ

4 IMPLICATIONS ON EARLIER FINDINGS

In this section, we discuss the implications of our empirical findings
on existing studies. Plenty of research studies have been proposed
to characterize, and learn useful knowledge based on bug-inducing
commits (e.g., [23, 62, 64]), since it helps understand how bugs were
introduced and thus subsequently how to repair them. Collecting
bug-inducing commits is the foundation of the aforementioned
studies. The current widely adopted approach to collecting bug-
inducing commits is SZZ [54] or its variants [18, 19, 32]. Unfortu-
nately, recent studies [15, 18] have pointed out that SZZ suffers
from the limitation of being imprecise. However, these two studies
have neither explained why SZZ is imprecise nor investigated the
effect of such imprecision on previous studies. Motivated by this,
we aim at answering the following research questions:

RQ2#A: Can our findings explain why SZZ is imprecise?

RQ2#B: Will our findings affect previous studies which

characterize bugs based on bug-inducing commits?

4.1 Implications on the SZZ Algorithm

The SZZ algorithm generally blames the statements modified by the
bug-fixing commits, and assumes the latest commit that modified
those statements introduced the bug. For the previous example
displayed in Figure 3, SZZ will blame statement 39 modified in
#b5524c90 and assume #128d7d20 is bug-inducing, since it last
modified this statement as shown in Figure 7. However, the commit
#128d7d20 is the one that introduced source file DummyLogStream
ingServlet.java 2 years ago, which is not the one that intro-
duced the bug. The real bug-inducing commit #10549ef2 is made
only several days before the bug was fixed. This example demon-
strates the limitation of SZZ, which motivates us the systematically
evaluate the performance of SZZ. Specifically, we apply SZZ based
on Fb for each bug as shown in Table 3, and denote the results as
ISZZb . We then compared ISZZb with Ib to evaluate the perfor-
mance of SZZ, and found that SZZ can retrieve 63.7% (ranging from
57.1% to 78.2% for different projects) of the bug-inducing commits
(recall) while 68.7% (ranging from 62.4% to 72.0%) of the identified
bug-inducing commits are not the real ones for the correspond-
ing bug (precision). Note that there are five variants of SZZ as
summarized by a recent study [18], and our results are based on
AG-SZZ [32] since it achieves the optimum performance in terms
of F-measure. Besides, it was used by most of the earlier studies
(e.g., [62, 67]). To explain such imprecision of SZZ, we investigated
its working mechanisms, and found that SZZ is actually subject to
the following two implicit assumptions:
Assumption 1. The lines of code, which are modified by the com-
mits with respect to fixing a bug, are the same as or evolved from
the lines of code that are modified by the bug-inducing commits.

Assumption 2. For each line that is modified by the commits
with respect to fixing a bug, the commit that last modified the line
introduced this bug.

If any of the two assumptions is invalid, SZZ cannot identify the
bug-inducing commits correctly via blaming the statements modi-
fied by the bug-fixing commits as shown by the example displayed
in Figure 7. Indicated by file coverage and statement coverage, we
can see that 26.8% of the source files modified by the bug-fixing
commits have not been modified by the associated bug-inducing
commits on average, and that ratio is 35.4% at the statement level.
Therefore, the first assumption is not hold for a non-negligible
portion of cases. For such cases, the bug-inducing commits cannot
be correctly identified if we only blame the modified statements in
the bug-fixing commits. This explains the low recall of SZZ. As sug-
gested by Finding #1, we can refer to those statements that are data
or control dependent and those source files that are directly depen-
dent to improve the recall. Indicated by direct statement coverage,
we can see that, for those statements modified by the bug-fixing
commits and also modified by the bug-inducing commits previously,
a non-negligible portion of them (i.e., 14.7%) were last modified by
other irrelevant commits instead of bug-inducing commits. There-
fore, the validity of the second assumption is seriously affected. As
a result, if we pick the last commit that modified the fixing state-
ments as bug-inducing commits, as adopted by the SZZ algorithm,
irrelevant commits might be identified as bug-inducing commits.
This explains the low precision of SZZ. Based on these results, we
answer RQ2#A via distilling the following finding:

Finding #4. Current SZZ implementations can only identify
around 68.7% of the real bug-inducing commits (Recall), and 63.7%
of the commits identified by them are not the real ones (Precision).
The reason is that the implicit assumptions of the SZZ algorithm
are violated by the insufficient file coverage and statement direct
coverage between bug-inducing and bug-fixing commits.

4.2 Effects on Previous Findings

Plenty of researches have been conducted to understand the char-
acteristics of software bugs based on bug-inducing commits. For
example, life span of software bugs has been investigated [17, 30],
which is measured from the time when the bugs were introduced
to the time when they were fixed. Existing studies rely on the SZZ
algorithm to identify the bug-inducing commits [17, 30]. However,
such measurements can be biased if the bug-inducing commits
identified by SZZ are imprecise. For instance, in the example as
shown in Figure 7, the life span is nearly two years if the commit
#128d7d20 is identified as the bug-inducing commit. However, the
life span of this bug is only three days since it got fixed (30th Jan)
soon after it was introduced (27th Jan). Therefore, we are motivated
to propose RQ2#B. To answer this question, we revisited previous
findings based on the real bug-inducing commits Ib (i.e., the Oracle
dataset) and the ones identified by AG-SZZ (denoted as ISZZb ).
Characteristics Selection:We choose the 10 most representative
findings involving bug-inducing commits investigated by recent
studies [9, 13, 17, 20, 21, 30, 46, 53] as shown in Table 2. In particular,
the developer’s experience is measured by the number of prior
commits submitted [11]. The time scatter is the gap of the time
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Table 2: Bias and Effect Sizes of the Findings Based on Bug-Inducing Commits Revealed by Earlier Studies

ID Findings ACCUMULO AMBARI LUCENE HADOOP JCR OOZIE CoreBench
p-value effect p-value effect p-value effect p-value effect p-value effect p-value effect p-value effect

1L The number of bug-inducing commits per bug [18, 19] 0.000 0.554 0.000 1.117 0.000 0.901 0.000 1.138 0.000 0.796 0.000 1.236 0.000 0.654
2L The number of inducing source files per bug [28, 31, 67, 68] 0.000 1.087 0.000 0.711 0.000 0.779 0.000 0.615 0.000 0.762 0.000 1.097 0.000 0.755
3U The time of the bug inducing changes (in terms of the 24 hours) [21] 0.288 0.105 0.252 0.259 0.618 0.042 0.592 0.158 0.860 0.045 0.383 0.014 0.000 0.092
4U The time of the bug inducing changes (in terms of the 7 weekdays) [54] 0.658 0.098 0.434 0.124 0.727 0.048 0.696 0.062 0.746 0.060 0.025 0.350 0.243 0.010
5G The experiences of the developers who submitted the buggy commit [21, 28, 67, 68] 0.000 0.661 0.140 0.170 0.000 0.369 0.037 0.292 0.104 0.176 0.002 0.470 0.032 0.069
6L The life span of software bugs [17, 30] 0.000 1.512 0.000 1.240 0.000 1.434 0.000 1.544 0.000 1.249 0.000 1.509 0.000 1.067
7L The time scatter among bug-inducing commits for a bug [18] 0.000 1.594 0.000 1.596 0.000 1.493 0.000 1.503 0.000 1.426 0.000 1.571 0.000 1.212
8L The code churn of added lines of bug-inducing commits [28, 31, 67, 68] 0.000 0.368 0.270 0.238 0.000 0.251 0.000 0.237 0.000 0.350 0.000 0.470 0.266 0.190
9L The code churn of deleted lines of bug-inducing commits [28, 31, 67, 68] 0.006 0.343 0.252 0.243 0.000 0.272 0.002 0.391 0.000 0.276 0.001 0.301 0.011 0.244
10L The change entropy of the bug-inducing commits [28, 67, 68] 0.000 0.416 0.145 0.286 0.000 0.458 0.002 0.523 0.000 0.599 0.000 0.693 0.022 0.365
Value 0.000 indicates the p-value is less than 0.0001. Emphasis on Cohen’s d indicates effect size: large ( |d | ≥ 0.8), medium (0.5 ≤ |d | < 0.8), small (0.2 ≤ |d | < 0.5) and negligible ( |d | < 0.2)
Bold values indicate the difference is significant (p-value<0.05). Superscript L denotes the findings measured based on Ib are Less than Sb , G denotes Greater, and U denotes unequal distribution

between the earliest and latest bug-inducing commits for a same
bug [18]. The code churn measures the number of added or deleted
lines of codes of a commit [28, 31, 67, 68] and the change entropy
measures the distributions of the modified code across each file in
a commit [28, 67, 68].
Measurement:We investigated those selected findings based on
Ib and ISZZb separately, and then examined whether they are sig-
nificantly different. Specifically, we used the Pearson’s X2 Test [44]
(applied to those characteristics with categorical values such as ID#3
and #4) and Mann-Whitney U-Test [39] (applied to characteristics
other than ID#3 and #4 since they are numerical values) to test
whether the differences are significant (p-value<0.05) as well as the
Cohen’s d effect size [29] to test whether the effects caused by such
differences are non-negligible.
Result: Table 2 shows the statistical results. Among the 10 find-
ings, no significant differences have been observed for two of them
(ID#3 and ID#4), and the differences for these two characteristics
are mostly negligible with respect to effect size. These two charac-
teristics measure the time when bug-inducing commits are more
frequently submitted (on Friday [54] and 0:00-4:00am [21]).

For the other eight findings, the differences are significant (p-
value<0.05) for most of the cases, and most of the differences for
the seven subjects are non-negligible with respect to effect size.
Compared with the oracle data, AG-SZZ labels a significantly larger
number of bug-inducing commits for each bug (ID#1). As a result,
significantly more source files will be marked as bug-inducing
(ID#2). This will hinder us correctly understand the percentage of
buggy source files in a project [70], and further affect prioritizing
software maintenance efforts. The experiences of developers who
submitted the bug-inducing commits measured by Ib are signifi-
cantly higher than those measured by SSZZb (ID#5). As such, the
earlier conclusion that junior developers are more likely to intro-
duce bugs might be biased [21]. The life span of software bugs
measured by SSZZb is significantly longer than that measured by
Ib (ID#6) and the effect sizes are all large for the seven projects.
This can introduce bias in understanding the long-lived software
bugs (i.e., those bugs whose life spans are longer than a year [48]).
The practical impact of long-lived bugs is significant since experi-
encing the same failure repetitively over a year can be particularly
frustrating to end-users. However, we observed that the proportion
of long-lived bugs measured in terms of the oracle data is 11.4%,
while the one measured by AG-SZZ is 69.2%. In other words, using
AG-SZZ, 57.8% of the bugs are mistakenly regarded as long-lived.
Such biased dataset will further lead to the bias of long-lived bugs’
characteristics investigated by the previous study [48]. For example,

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Oracle

AG-SZZ

Critical Major Blocker Minor Trivial
Figure 8: Comparison of the Severities of Long-Lived Bugs

as shown in Figure 8, over 76.7% of the long-lived bugs have high
severity levels of “Major” or “Critical” measured based on Ib , while
this ratio is only 68.7% based on the results of AG-SZZ. The charac-
teristics in terms of code churn and change entropy are significantly
affected with non-negligible effects (ID#8, #9 and #10), which will
affect just-in-time quality assurance [28] since these are frequently
used metrics to build prediction models.

We answer RQ2#B via distilling the following finding:

Finding #5. The biased dataset of bug-inducing commits used in
previous studies significantly affects their findings. Specifically,
significant differences (p-value<0.05) and non-negligible effect
sizes have been observed for 8 out of 10 previous findings.

5 IMPLICATIONS ON AUTOMATED DEBUGGING

As revealed in Section 2, developers in practice often look for bug-
inducing commits to facilitate bug triaging and debugging. How-
ever, such information has never been leveraged in the design of
automated debugging techniques. Therefore, we are motivated to
study the following research question in this section:

RQ3:Canbug-inducing commits and ourfindings be lever-

aged to advance existing automated debugging techniques?

To facilitate this study, we selected the Defects4J [27] bench-
mark since it has been widely adopted in fault localization and auto-
mated program repair researches (e.g., [42, 45, 45, 51, 58, 59, 61, 62]).
However, the information of bug-inducing commits for the bugs in
Defects4J is not available and cannot be found in the associated
bug reports neither. To identify bug-inducing commits, we conduct
binary search, which executes the bug-revealing test cases provided
by Defects4J, on the complete version history (automated by git
bisect). The first commit on which the bug-revealing test cases
start to fail is considered as the bug-inducing commit. This heuristic
follows an existing study [15] and the debugging practice observed
in open-source projects (e.g., see bug report of SOLR-8026 [7]). In
total, we have collected the bug-inducing commits for 91 out of the
357 bugs in Defects4J as shown in Table 3.

5.1 Implications on Fault Localization

Our Finding #2 indicates that the majority (i.e., 71.1%) of the bug-
fixing statements are evolved from or dependent on the bug-inducing

333



Exploring and Exploiting the Correlations between Bug-Inducing and Bug-Fixing Commits ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 3: Subjects from the Defects4J Dataset

Subject #Recovered #Total KLOC Test KLOC #Test Cases
Commons Lang 7 65 22 6 2,245
JFreeChart 9 26 96 50 2,205
Commons Math 24 106 85 19 3,602
Joda-Time 6 27 28 53 4,130
Closure Compiler 45 133 147 104 7,929
Total 91 357 378 232 20,111

statements. This observation suggests that it is possible to leverage
such knowledge to advance existing spectrum-based fault local-
ization (SBFL) techniques [45]. Current SBFL techniques typically
leverage test coverage collected via executing test cases on the cur-
rent version. On the contrary, bug-inducing commits provide the
information from another dimension in terms of version histories.
To investigate whether such information can boost the performance
of SBFL, we devise the following approach inspired by Finding #2.
Methodology: The same as Section 3.1, for a bug b, we use LIb to
denote the statements introduced by the bug-inducing commits,
and LI Fb to denote those statements on the buggy version that are
evolved from LIb . We further conduct data-flow and control-flow
analyses based on LI Fb , and obtain a set of statements affected by
them (denoted as AFI Fb ). Suppose A denotes the set of statements
identified by SBFLwith the suspiciousness score of SBFL(s) for each
statement s in A. We adopt the approach specified in Equation 6 to
compute the suspiciousness score of statements via exploiting the
information of bug-inducing commits. Our insight is intuitive. If a
statement identified by SBFL is evolved directly from the associated
bug-inducing commits, we raise its suspiciousness score by 1.0. If it
is affected by those statements (i.e., control or data-flow dependent)
evolved from the bug-inducing commits, we raise its suspiciousness
score by 0.5. Otherwise, we keep the original score as identified by
SBFL. Be noted that the original scores denoted by SBFL(s) have
been normalized to the range of [0, 1] before applying our strategy.

BOOST (s) =


SBFL(s) + 1.0 s ∈ A ∧ s ∈ LI Fb
SBFL(s) + 0.5 s ∈ A ∧ s < LI Fb ∧ s ∈ ALI Fb
SBFL(s) otherwise

(6)

We then use the boost model to rank all suspicious statements.
Results: Pearson et al. have evaluated multiple SBFL techniques on
Defects4J recently [45]. They provided the oracle (i.e., the buggy
statements) and the coverage spectrum for each bug. Therefore,
we leverage these publicly available data to generate the results of
SBFL. Specifically, we leverage the formula of Ochiai [8] since it has
been reported to be the best formula for SBFL [45, 63]. We leverage
two well-known metrics, namely MAP and MRR [40, 55, 62], to
evaluate the performance of our boost model. Figure 9 shows the
results of the 91 recovered bugs. Our boost model can achieve an
average MAP of 0.324 and MRR of 0.379 (these results are weighted
averages over the 95 bugs from five projects). The improvement of
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Figure 9: Comparing our Boost Model and SBFL

!options.skipAllPasses &&

CompilerInput previous	=	inputsById.put(id,	input);
CompilerInput previous	=	putCompilerInput(id,	input);

-

-

+

a4c526da …/ jscomp/Compiler.java

0a670cb5 …/	jscomp/Compiler.java

// 𝐵𝑢𝑔 𝐼𝑛𝑑𝑢𝑐𝑖𝑛𝑔 𝐶𝑜𝑚𝑚𝑖𝑡

// 𝐵𝑢𝑔 𝐹𝑖𝑥𝑖𝑛𝑔 𝐶𝑜𝑚𝑚𝑖𝑡

482

482

if	(options.dependencyOptions.needsManagement())	{
if	(options.dependencyOptions.needsManagement()	&&+

1272

1272

-

!options.skipAllPasses &&1273+
options.closurePass)	{1274+

if	(options.dependencyOptions.needsManagement()	&&
1285

1284

options.closurePass)	{1286

Figure 10: Bug-Inducing and Fixing Commit of Closure 31

MAP over the Ochiai technique is 90.8% on average (ranging from
33.0% to 210.9%). The improvement for MRR is 112.7% on average
(ranging from 47.7% to 390.1%). These results are very promising,
which indicates that we can identify the root causes of bugs more
precisely via leveraging the information of bug-inducing commits
than merely using SBFL. However, the statement coverage of bug-
fixing statements is still only around 70.0% as indicated by Finding
#2. In future, we plan to design more sophisticated approaches,
such as considering dependent functions and classes as indicated
by Finding #1 and Finding #2, to better locate bugs.

Based on the above results, we can distill the following finding:
Finding #6. The information of bug-inducing commits can boost
the performance of automated FL significantly. Specifically, the
MAP can be improved by 90.8% and MRR by 112.7%.

5.2 Implications on Automated Program Repair

Selecting appropriate change actions (a.k.a., mutation operators) is
critical in designing effective APR techniques [41, 61]. Our Finding
#3 indicates that the majority (i.e., 52.6%) of the change actions that
are performed to fix bugs can be inferred via reverting those change
actions performed in the corresponding bug-inducing commits.
This finding can guide the search of mutation operators in designing
APR. Figure 10 shows the bug fixing patch and the identified bug-
inducing commit of bug Closure-31 from Defects4J. As we can
see, code element “!options.skipAllPasses &&” at line 1285 is
deleted to fix this bug, and this code element was inserted at line
1273 by the corresponding bug-inducing commit. Therefore, we
can simply revert partial of the bug-inducing commit to fix this bug
if the information of the bug-inducing commit can be identified.
On the contrary, this bug cannot be repaired by the state-of-the-
art APR techniques (i.e., CapGen[61], SimFix [26], ELIXIR [49],
FixMiner [34] and ssFix [66] as reported by [37]). This example also
demonstrates the new challenges when leveraging bug-inducing
commits. As shown in Figure 10, the bug-inducing commit also
introduced other change actions, such as replacing the method
name at line 482, which is not required to be changed to fix the bug.
Therefore, new searching strategies are required to be devised to
identify those change actions that are needed to be reverted among
all the ones that are performed by the bug-inducing commit. To
achieve such a goal, we plan to further investigate the correlations
between the change actions performed by the bug-inducing commit
and those performed by the bug-fixing commit. For instance, we
observe that change action ⟨Delete, Expression_Statement⟩ in bug-
inducing commits is significantly correlated with change action
⟨Insert, Field_Declaration⟩ in bug-fixing commits. This suggests
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that if a bug is introduced via deleting an expression statement, it is
more likely to be fixed via inserting a field declaration. We plan to
leverage such correlations to design more sophisticated strategies
to search appropriate mutation operators for APR in the future.
Based on the above example, we distill the following finding:

Finding #7. It is promising to leverage bug-inducing commits in
designing APR techniques.

As revealed by Finding #6 and Finding #7, it is highly recom-
mended to consider the information of bug-inducing commits,
which can be obtained automatically via testing on version his-
tories, when devising new automated FL and APR techniques.

6 RELATEDWORK

Many researches have been conducted involving bug-inducing com-
mits, which can be broadly classified into the following categories:

Characterizing bug-inducing commits. Śliwerski et al. [54]
studied on which weekdays developers are more likely to submit
bug-inducing commits. Bernardi et al. [13] investigated over 9,000
bugs from Eclipse and Mozilla, and found that developers who are
more likely to introduce bugs seldom communicatewith other devel-
opers through analyzing developers’ social networks. Researchers
are also interested in whether the experience of developers will
affect their possibility of introducing software bugs [21, 46]. Ey-
olfson et al. [21] found that developers who make commits on a
daily basis are less likely to introduce bugs, which indicates that
daily-committing is a good developing practice. The life span of
software bugs has also been investigated [17, 30]. For instance,
Kim et al. [30] analyzed the duration between the check-in time of
the bug-inducing commit and that of the bug-fixing commit, and
found that the life span of bugs is usually 100 to 200 days. Based
on this, Saha et al. [48] later investigated the characteristics of
long-lived bugs (i.e., those bugs whose life spans are over a year).
Bavota et al. [12] investigated when a refactoring code change will
induce a bug. Recently, Asaduzzaman et al. [9] also investigated the
characteristics of bug-inducing commits for Android systems.

Just-in-time quality assurance. Based on the characteristics
of bug-inducing commits, many existing studies propose to predict
whether a commit will introduce bugs at check-in time. Such a
process is known as just-in-time quality assurance [28]. It enables
developers to timely identify the introduced bugs if any, and pre-
vents these bugs from spreading. Aversano et al. [10] proposed
to learn from bug-inducing commits to prevent error-prone code.
Specifically, they used a weighted term vector to represent a com-
mit, where each term is extracted by considering a sequence of
alphanumeric characters separated by non-alphanumeric charac-
ters. Machine learning algorithms (e.g., KNN and SVM) are then
leveraged to predict whether a commit is error-prone. Kim et al. also
proposed to predict whether a commit is bug-inducing [31]. Instead
of extracting features from the tokens of a commit, they proposed
to extract features from the log message, file names and the com-
plexities of the changes made in the commit. Kamei et al. [28] later
conducted a large-scale empirical study of just-in-time quality as-
surance. They extracted the following five categories of features
from each commit: the diffusion of the commit, the size of the com-
mit, the intention of the commit, the history of the files modified
in the commit, and the experience of the developer who committed

the changes. More recently, Yang et al. [67] leveraged deep learning
techniques to predict whether a commit is error-prone. In addi-
tion to the techniques for single projects, cross-project just-in-time
quality assurance has also been investigated by a recent study [23].

Debugging involving bug-inducing commits.Wen et al. [62]
proposed a fault localization technique, which leverages informa-
tion retrieval methods, to locate bug-inducing commits based on
bug reports. Wu et al. [64] conducted an empirical study to un-
derstand the characteristics of the inducing commits for crashes,
and then proposed an approach to locating crash-inducing com-
mits automatically based on crash reports. Tan et al. [56] derived a
set of code transformations obtained from the bug-inducing com-
mits for 73 real regressions via manual inspection, and proposed
relifix to repair regression bugs. The SZZ algorithm [54] and its
variants [18, 19, 32] have been proposed to locate bug-inducing
commits based on the code changes made by the bug-fixing com-
mits. However, recent studies have pointed out that SZZ suffers
from the problem of being imprecise [15, 18]. For instance, Böhme
et al. [15] found that, for nearly one third of their studied bugs, SZZ
cannot identify any real bug-inducing commits via “blaming” the
statements modified by the bug-fixing commits. Costa et al. [18]
later proposed a framework to evaluate the results of SZZ. They
found that for 46.0% of their studied bugs, the bug-inducing com-
mits identified by SZZ are years apart from one another while it
is unlikely that code changes committed years apart will induce
the same bug [15]. Unfortunately, these two studies have neither
explained why SZZ is imprecise nor investigated the effect of such
imprecision. Our study bridges this gap.

7 CONCLUSION

In this study, we collected the bug-fixing commits and the associated
bug-inducing commits for 333 bugs from seven large open-source
projects. Based on this dataset, we conducted empirical studies to
understand the correlations, in terms of code elements andmodifica-
tions, between a bug’s inducing and fixing commits. The empirical
findings explain why the SZZ algorithm, the most widely-adopted
approach to collecting bug-inducing commits, is imprecise. We also
observed that most of the findings revealed by previous studies
that leveraged SZZ are significantly affected by SZZ’s imprecision.
Furthermore, by conducting experiments on Defects4J [27], we
observed that leveraging the information of bug-inducing commits
can significantly boost the performance of existing automated fault
localization and program repair techniques.

In this study, the design of using bug-inducing commits in fault
localization and program repair shows its effectiveness, but is still
preliminary. In the future, we plan to devise more sophisticated
approaches based on our empirical findings to further improve the
performance of fault localization and automated program repair.
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