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ABSTRACT

WebView is a widely used Android component that augments a
native app with web browser capabilities. It eases the interactions
between an app’s native code and web code. However, the interac-
tion mechanism of WebView induces new types of bugs in Android
apps. Understanding the characteristics and manifestation of these
WebView-induced bugs (ωBugs for short) facilitates the correct
usages of WebViews in Android apps. This motivates us to conduct
the first empirical study on ωBugs based on those found in popular
open-source Android apps. Our study identified the major root
causes and consequences of ωBugs and made interesting observa-
tions that can be leveraged for detecting and diagnosing ωBugs.
Based on the empirical study, we further propose an automated test-
ing techniqueωDroid to effectively exposeωBugs in Android apps.
In our experiments, ωDroid successfully discovered 30 unique and
previously-unknown ωBugs when applied to 146 open-source An-
droid apps. We reported the 30 ωBugs to the corresponding app
developers. Out of these 30 ωBugs, 14 were confirmed and 7 of
them were fixed. This shows that ωDroid can effectively detect
ωBugs that are of the developers’ concern.
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1 INTRODUCTION

WebView [62] is a widely used Android component that allows An-
droid apps to display webpages without relying on web browsers.
It enables bi-directional interactions between the web end and the
native end of an Android app. It is attractive to developers and com-
panies since existing web technologies that work on other platforms
can be readily integrated into a native Android app through Web-
View [53]. Earlier studies [81, 82, 87] have shown that WebViews
are popularly used by apps in Google Play store [27].

Despite its usefulness, the interaction mechanism of WebView is
complicated and causes various bugs in real-world Android apps. It
is reported that apps containing WebViews are suffering from poor
performance [33] and vulnerable to security attacks [28]. Existing
studies focus mainly on the security issues induced byWebView [68,
77, 78, 81, 82, 87, 91, 93, 95, 97]. There is also an earlier study on
detecting bugs in theWebView bridges between Java and JavaScript
code in Android apps [77]. Nonetheless, these existing studies only
explored a small fraction of WebView-induced bugs (ωBugs for
short) from limited perspectives. They did not aim to provide a
systematic examination of such bugs. In fact, little is known about
how WebView induces bugs to real-world Android apps.

To bridge the gap, we conducted the first systematic empirical
study on 124 ωBugs collected from popular open-source Android
apps. In the study, we focused on the bugs that are related to the
usages and runtime mechanisms of WebView. Well-studied bugs
caused by common JavaScript errors [88, 89, 92] are excluded from
our scope. Our study aims to understand ωBugs from a wide range
of perspectives by answering three research questions:
• RQ1 (Bug cause): What are the common root causes of ωBugs in
Android apps? Can they be categorized?

• RQ2 (Bug consequence):What are the common consequences of

ωBugs in Android apps? How do ωBugs affect user experience?

• RQ3 (Bug manifestation): How do ωBugs manifest themselves?

Can we propose testing techniques to effectively expose ωBugs in
Android apps?

https://doi.org/10.1145/3238147.3238180
https://doi.org/10.1145/3238147.3238180
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ASE ’18, September 3–7, 2018, Montpellier, France Jiajun Hu, Lili Wei, Yepang Liu, Shing-Chi Cheung, and Huaxun Huang

Answering these research questions is practically beneficial to
both app developers and researchers. RQ1 characterizes the com-
mon root causes of ωBugs and can guide developers to avoid such
bugs at an early stage during an app’s development. RQ2–3 investi-
gate the consequences and manifestation of ωBugs and can guide
test case generation to effectively detect ωBugs.

In our study, we made several interesting observations. For exam-
ple, we found that ωBugs are mostly caused by (a) misalignments
between a Webview’s lifecycle and an activity’s or a fragment’s life-
cycle, and (b) the evolution of WebView. Only a few of our studied
real-world ωBugs are caused by the errors stemming from bridge
communications [13]. We also found that the ωBugs caused by
WebView lifecycle misalignments often induce resource leakages
and UI inconsistencies. This inspired us to design test oracles to
facilitate the testing of ωBugs.

Based on our empirical findings, we propose a technique,ωDroid,
to effectively test common types of ωBugs in real-world Android
apps. ωDroid focuses on testing ωBugs induced by WebView life-
cycle misalignments by injecting lifecycle events when exercising
WebView components. ωDroid is also equipped with effective test
oracles derived from our empirical study to expose triggeredωBugs.
We applied ωDroid to 146 real-world Android apps. It successfully
detected 30 unique and previously-unknown ωBugs. We reported
the 30 bugs to the corresponding app developers. So far, 14 of our
reported bugs have been confirmed by the developers and seven
of them have been fixed shortly afterwards. These results confirm
the usefulness of our empirical study and show that ωDroid can
effectively detect ωBugs of developers’ concern. To summarize, this
paper makes the following major contributions:

• We conducted the first comprehensive empirical study on ωBugs
in real-world Android apps. The study disclosed the character-
istics of ωBugs and identified potential research directions for
the detection and diagnosis of ωBugs.We released our dataset to

facilitate future research [55].
• Driven by our empirical findings, we designed an automated
testing technique ωDroid to effectively expose common types
of ωBugs in real-world Android apps. ωDroid injects lifecycle
events into WebView test cases and exposes ωBugs by leveraging
effective test oracles.

• We evaluated ωDroid on 146 open-source Android apps. It suc-
cessfully uncovered 30 ωBugs. App developers showed interest
in our detected bugs with 14 of them either confirmed or fixed.

2 BACKGROUND

2.1 Android SystemWebView

WebView [62] is an Android component that allows Android apps
to display webpages. It differs from aweb browser in that it provides
a set of APIs to facilitate bi-directional interactions between the
web end (JavaScript) and the native end (Java) of an Android app.

FromWeb to Native: AWebView can transfer control from the
web end to the native end in two ways. The first way is to use Bridge
Communication by creating a Java object that serves as a bridge to
the JavaScript environment. This Java object is called bridge object

(or JavaScript Interface). Developers can register a bridge object to
the JavaScript environment using the addJavascriptInterface()
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Figure 1: Activity andWebView lifecycles. Black color repre-

sents activity. Grey color represents WebView. Boxes repre-

sent states. Arrows represent state transitions.

API, which enables JavaScript code to invoke the public methods
annotated by @JavascriptInterface in the bridge object. The
second way is to register event handlers at aWebView to respond to
events (e.g., URL loading) occurred at the web end. For example, one
can override shouldOverrideUrlLoading()method to specify the
task to be performed when a URL is being loaded by a WebView.

FromNative toWeb: The native end can transfer control to the
web end usingWebViewAPIs. For example, evaluateJavascript()
asynchronously executes JavaScript code under the context of the
current page displayed in a WebView.

2.2 Activity/Fragment and WebView Lifecycles

A WebView is often enclosed by an Android activity or fragment.
An activity is a fundamental building block that provides Graphical
User Interfaces (GUIs) to interact with an app, while a fragment
represents a portion of a GUI and can be reused inmultiple activities.
Both activities and fragments are driven by a predefined lifecycle
that specifies how they respond to events occurred at runtime.
For example, the outer cycle of Figure 1 represents the lifecyle
of an activity [4] whose states are traversed via invoking a set of
callback methods. The runtime state of an activity is managed by
the Android OS according to the occurring events.

A WebView’s lifecycle differs from that of its enclosing activ-
ity/fragment. It only has three states: Resumed, Paused, and De-

stroyed, as shown in the grey part of Figure 1. A WebView becomes
focusable and displays its content when it is in the Resumed state.
The resources loaded by a WebView such as video/audio, anima-
tion, geolocation are paused when WebView enters the Paused

state. A WebView will be destroyed after entering the Destroyed
state. Unlike an activity/fragment whose state transitions are man-
aged by the Android OS, a WebView’s state transitions should be
explicitly managed by app developers via invoking specific Web-
View APIs. For example, a WebView enters the Paused state after
invoking onPause(), while it enters the Destroyed state after in-
voking destroy(). Developers may invoke multiple APIs in a state
transition. For instance, developers who want to pause JavaScript
execution before a WebView enters the Paused state can invoke
two WebView APIs: pauseTimers() and onPause().
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Figure 2: Statistics of apps used in our empirical study.

3 EMPIRICAL STUDY METHODOLOGY

We followed the process adopted by existing work [71, 79, 80, 98] to
prepare the dataset for our empirical study. Specifically, we selected
open-source Android apps as our study subjects because we need
to dig into the apps’ documented bugs and corresponding code
revisions to answer RQ1–3. We searched for suitable subjects by
scanning all apps on F-Droid [20], a popular open-source Android
app hosting site that is widely used by earlier studies [75, 96, 98].
We also included a set of open-source Android apps that were
studied by previous work [67, 70, 72, 75, 90, 99] but not hosted
on F-Droid. We considered an app to be a suitable subject if its
source code contains at least one instance of the statement “import
android.webkit.WebView;”, which indicates the use ofWebViews.
In total, we obtained 293 open-source Android apps for our study.

To locate ωBugs in the 293 apps, we searched for code revi-
sions and closed bug reports that contain keywords “webview”
or “javascript” (case insensitive). 952 revisions and 1028 bug re-
ports were returned by searching the keyword “webview”; 257 revi-
sions and 347 bug reports were returned by searching the keyword
“javascript”. The returned revisions and bug reports may overlap as
a code revision and a bug report may contain both keywords. We
took the following steps to filter out noises from the search results:
• We first excluded the code revisions and bug reports that are not
related to valid ωBugs. For example, some bug reports may be
feature requests from users. Some code revisions and bug reports
may accidentally contain our search keywords.

• For the bug reports that remained after the first step, we tried to
recover the bug-fixing revision(s). A bug report was kept in our
dataset only if we successfully found the bug-fixing revision(s).

• For the code revisions that remained after the first step, we only
kept those that satisfy the following constraints: (1) we found the
bug report(s) for the issues addressed in the code revisions, or (2)
the commit logs or comments in code diff explicitly indicate that
the code revisions are bug-fixing revisions.
Four of the co-authors were involved in the process for data col-

lection, analysis, and cross-checking. As a result, we obtained 124
ωBugs from 51 open-source Android apps. Figure 2 shows the sta-
tistics of these apps. Information including the number of stars, app

Table 1: ωBugs root cause categories and their distributions.

Root Cause Number

Misaligned WebView Lifecycles 35
WebView Evolution & Device Customization 40

Misconfiguration 21
API Misuse 16

Bridge Communication 4
WebView Limitation 5

Others 3
Total 124

size (in KLOC), number of revisions and issues are collected from
the apps’ project hosting site such as GitHub [26]. Other informa-
tion including the app rating, category, and number of downloads
are collected from Google Play store [27] (10 of the 51 apps are not
available on Google Play store). Such data show that our subjects are
(1) large in size (around 10 KLOC on average), (2) well-maintained
(containing thousands of revisions and hundreds of issues on av-
erage), (3) popular (90% of them received over 10K downloads),
and (4) diversified (covering 14 categories). We carefully studied
these ωBugs by analyzing their bug reports, code revisions, and
related discussions from online forums such as Stack Overflow [52]
to answer RQ1–3. This took many rounds of investigations and
discussions. In the end, the four co-authors reached consensus on
the root cause, consequence, and manifestation for every ωBug in
the dataset.

4 EMPIRICAL STUDY RESULTS

4.1 RQ1: Bug Cause

We studied the patches and bug reports of the 124 ωBugs in our
dataset to understand their root causes. We identified six major
categories of root causes from these ωBugs. Table 1 lists the cate-
gories and the number of bugs in each category. In the following,
we discuss the common root causes with examples.

4.1.1 Misaligned WebView Lifecycles. 35 of the 124 ωBugs are
caused by the misalignment between a WebView’s lifecycle state
and that of its enclosing activity/fragment. We call this phenom-
enon lifecycle misalignment. When the enclosing component of a
WebView enters a certain lifecycle state, it expects the enclosed
WebView to enter a corresponding lifecycle state. However, since
the lifecycle of a WebView and that of its enclosing component are
separately maintained by app developers and Android OS, lifecy-
cle misalignments can easily arise, inducing ωBugs. For example,
WordPress contained a bug (issue 484 [64]) that caused users to
keep hearing video sounds after they left an activity enclosing
a video-playing WebView. The bug occurred because developers
did not properly make the WebView enter Paused state when its
enclosing activity is paused. To fix this bug, developers aligned
the lifecycle of the WebView with that of its enclosing activity, as
shown in Figure 3, by explicitly calling mWebView.onPause() (line
5) in the onPause() callback of WebViewActivity.

4.1.2 WebView Evolution & Device Customization. ωBugs can ex-
pose severe compatibility problems. These bugs occurred because
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1. public class WebViewActivity extends WPActionBarActivity {
2. + @Override
3. + protected void onPause() {
4. + super.onPause();
5. + mWebView.onPause();
6. + }
7. }

Figure 3: Patch for WordPress issue 484 (Simplified)

WebView is fast evolving and non-uniformly supported on different
device models, causing a WebView to behave inconsistently across
WebView versions and devices. We identified 40 such ωBugs .

In Android ecosystem, the WebView package is maintained and
upgraded separately from Android OS since Android 5 [6]. This
aggravates the situation of compatibility problems [74, 98] because
ωBugs can occur not only when the Android OS upgrades but also
when WebView itself is upgraded. We observed 33 such bugs in
our dataset. For example, Gadgetbridge issue 758 [24] was caused
by an upgrade of WebView to version 60 that stopped supporting
top-frame navigations to data URLs because such navigations were
widely used in spoofing and phishing attacks [43]. App developers
have to modify their code to adapt to the change.

Besides, WebView is not supported uniformly across device mod-
els. As a result, ωBugs can be device-specific. We observed 7 such
bugs in our dataset. For example, Aard Dictionary suffered from
a bug (issue 28 [3]) that caused the page scrolling in a WebView
on e-ink devices to create a lot of screen refreshing and annoy-
ing flickers. The bug occurred because the high display latency of
e-ink devices makes it hard to guarantee the smoothness of page
scrolling [1].

4.1.3 Misconfiguration. Many webpages require customized We-
bView settings to function properly. For example, displaying a
webpage with JavaScript content requires JavaScript to be enabled
in WebView settings. Misconfigured WebView settings can prevent
a webpage from being loaded and displayed correctly. However,
properly configuring WebViews is non-trivial because there are
over 50 configurable parameters in WebSettings [61], and in many
cases the webpages to be loaded at runtime may not be known in
advance when an app is developed. 21 of the 124 ωBugs occurred
due to the misconfiguration of WebView settings. For instance, four
bug reports in Nextcloud News Reader [34] mentioned that articles
are displayed using desktop configuration with large screen widths
(Figure 6a). This would significantly reduce the readability as users
have to frequently scroll their screens from left to right to read
an article. The problem occurred because the WebView in the app
failed to redirect the requests to mobile sites. Such redirection relies
on the web storage capability that needs to be explicitly enabled
in WebView settings. The developers of the app fixed the bug by
properly configuring the WebView, i.e., enabling web storage by
invoking WebSettings.setDomStorageEnabled(true).

4.1.4 API Misuse. 16 of the 124 ωBugs were caused by the mis-
uses of WebView APIs. While WebView provides powerful APIs for
bi-directional interactions between an app’s web end and native
end, the protocols of these APIs are complex. Without good under-
standing of the constraints imposed by these protocols, developers
can easily make mistakes when using WebView APIs. An example

1. + final WebView webView =
2. + (WebView) getView().findViewById(R.id.viewPostWebView);
3. + webView.setWebViewClient(
4. + new WPWebViewClient(WordPress.getCurrentBlog()));
5. new Thread() {
6. @Override
7. public void run() {
8. - final WebView webView =
9. - (WebView) getView().findViewById(R.id.viewPostWebView);
10. - webView.setWebViewClient(
11. - new WPWebViewClient(WordPress.getCurrentBlog()));
12. //...
13. }
14. }.start();

Figure 4: Patch for WordPress issue 1057

of such constraints is that WebView APIs must be called on an
app’s UI thread. According to WebView documentation [31]: "if you
call methods on WebView from any thread other than your app’s UI

thread, it can cause unexpected results". However, we observed 7
cases where this protocol is violated. For instance, Figure 4 shows
the patch for WordPress issue 1057 [64]. In the buggy version, We-
bView APIs were mistakenly called on a non-UI thread (lines 8–11).
Developers fixed the bug by relocating the API calls to the UI thread
(lines 1–4). Another example of the constraints is the timeliness

of WebView API invocation. Invocation of some WebView APIs is
subject to time constraints. Violations of these constraints can re-
sult in runtime errors. For instance, the API getUrl() will return
null if webpage loading has not yet finished. This can easily lead
to NullPointerException. Slide suffered from app crashes (issue
2540 [49]) due to the premature invocation of getUrl().

4.1.5 Bridge Communication. Previous work [77] has shown that
the bridge communication between Java and JavaScript is error-
prone. We observed four bugs related to bridge communications in
our dataset. For example, two performance bugs in Wikipedia [63]
occurred due to heavy transactions across the bridge. This forced
the system to allocate a huge amount of memory for data com-
munications across the bridge, thereby increasing the chances of
stack overflow and out of memory errors. The other two bugs oc-
curred because of obfuscation. When the bridge object methods are
obfuscated, they cannot be called by name from JavaScript.

4.1.6 WebView Limitation. Although WebView is a powerful com-
ponent, it has limitations. Due to security concerns, WebView can-
not support all web browsing features. As a result, developers may
encounter problems when they implement features that WebView
cannot support. We observed five such ωBugs. For example, several
bug reports in WordPress [64] and RedReader [42] mentioned that
WebViews showed a blank page when opening file download links
(e.g., pdf), which is not supported by WebView. Developers fixed
these bugs by launching web browsers to handle the links.

Finally, there are other types of bugs in our dataset. For example,
OCReader [35] issue 9 reported a bug that aWebView displays blank
pages when it is wrapped by a NestedScrollView because it has
to load the whole page at once, thus exceeding graphics memory
limit. However, such bugs are rare and we do not further discuss
them in this paper.
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1. public class AboutActivity extends ActionBarActivity {
2. + @Override
3. + protected void onDestroy() {
4. + super.onDestroy();
5. + if(webViewContainer != null && webview != null) {
6. + webViewContainer.removeAllViews();
7. + webview.destroy();
8. + }
9. + }
10. }

11.
12. public class ItemDescriptionFragment extends Fragment {
13. @Override
14. public void onDestroy() {
15. + if(webvDescription != null) {
16. + webvDescription.removeAllViews();
17. + webvDescription.destroy();
18. + }
19. }
20. }

Figure 5: AntennaPod revision 77647cc (Simplified)

Answer to RQ1: We identified six categories of common root

causes for ωBugs in Android apps, where misaligned WebView

lifecycles and WebView evolution & device customization are

two dominant ones. Only a few of our studied ωBugs are caused
by bi-directional interactions across WebView bridge objects.

4.2 RQ2: Bug Consequence

To understand the common consequences of ωBugs, we analyzed
the bug reports, follow-up discussions, commit logs, and correlated
code comments of theωBugs in our dataset. ForωBugs that we can-
not identify consequences from their textual descriptions, we man-
ually reproduced them in emulators to observe its consequences at
runtime. In total, we successfully identified the consequences of 114
ωBugs. We failed to reproduce the remaining 10 bugs due to lack
of configuration details or necessary environments. We observed
the following common types of consequences caused by ωBugs.

4.2.1 Performance Degradation. 31 of the 124 ωBugs induced per-
formance degradations. These bugs demonstrate similar conse-
quences of conventional performance bugs [79]. They can cause
resource leakages, battery drains, app slowdowns, etc. For exam-
ple, AntennaPod revision 77647cc [9] (Figure 5) fixed a WebView-
induced memory leakage. The bug occurred due to the lifecycle
misalignment problem (Section 4.1.1): when destroying the enclos-
ing activity of a WebView, developers forgot to destroy the enclosed
WebView. This would prevent the runtime in recycling the resources
used by the WebView and its enclosing activity, causing memory
leakage. The bug was fixed by adding an explicit call to the Web-
View’s destroy() API (line 7) in the onDestroy() callback of the
enclosing AboutActivity.

4.2.2 Problematic UI Display. 29 of the 124 ωBugs resulted in prob-
lematic UI displays in WebViews. Since WebViews are intensively
used to display webpages in Android apps, such problems can
significantly affect app usability such as the example (Figure 6a)
discussed in Section 4.1.3. WebView may also display web content
incorrectly. For example, Figure 6b shows a WebView displaying
garbled characters (PocketHub issue 427 [38]), which was induced
by WebView API evolution.

4.2.3 UI Inconsistency. Another 17 of the 124 ωBugs exhibit UI
inconsistencies after a restart of the WebView’s enclosing activ-
ity/fragment. For example, in Wikipedia bug report T63512 [63],
users complained about the inconsistent display of webpages: If
the enclosing activity of a WebView is restarted after users scroll
down a webpage, the webpage will be reloaded and the users’ scroll

(a) Nextclound News Reader (b) PocketHub

Figure 6: Problematic UI displays of WebView

position will get lost. Such problems are common since events that
induce restart of activity/fragment (e.g., device rotation, exiting and
re-entering an app, etc) are commonly triggered by app users.

For the remaining 37 bugs, 15 of them induce crashes (e.g., Slide
issue 2540 [49]) and the rest 22 bugs are app-specific functional
issues. We can observe from the above discussions that the majority
of our studied ωBugs cause performance or UI issues. Generally, it
is non-trivial to define test oracles to detect performance and UI
bugs via testing [79, 86]. However, studying the consequences of
ωBugs enables us to propose mechanisms to generate test oracles
for common ωBugs, which will be elaborated in the next section.

Answer toRQ2: Major consequences caused byωBugs include
performance degradation, UI issues, and app crashes. These

consequences can lead to poor user experience.

4.3 RQ3: Bug Manifestation

Understanding the manifestation of ωBugs can help us design and
select effective tests to detect ωBugs. In RQ3, we aim to investigate
common inputs required to trigger ωBugs so as to design effective
WebView testing techniques. We studied the bug reports, code
revisions and related discussions of the ωBugs in our dataset to
learn how these bugs were triggered and noted by app developers.
Similar to what we did when studying ωBugs consequences, we
manually reproduced the ωBugs, for which we fail to learn the
manifestation from textual data sources. In total, we successfully
understood themanifestation of 97 of the 127ωBugs. The remaining
bugs cannot be reproduced due to reasons similar to those discussed
in Section 4.2. In the study, we made four major observations, which
demonstrate common challenges in testing ωBugs.

4.3.1 Manifestation ofωBugs can be content-sensitive. Themanifes-
tation of 30 ωBugs requires webpages with specific content such as
images (e.g., AnkiDroid issue 2824 [8]), animations (e.g., Nextcloud
News Reader issue 331 [34]), video/audio (e.g., WordPress issue
484 [64], see Section 4.1), and various character encodings (e.g.,
PocketHub issue 427 [38]). For example, WordPress issue 484 [64]
(Figure 3) can only be exposed by webpages with video/audio con-
tent. However, webpage contents can be highly diversified while
an ωBug can only be triggered by specific contents. Therefore, how
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(a) Save For Offline (b) Android default brower

Figure 7: UI display differences between WebViews and mo-

bile web browsers

to select webpages with the specific content to effectively expose
ωBugs is a critical challenge for WebView testing.

4.3.2 Lifecycle events are required to trigger common ωBugs. In
our dataset, 27 ωBugs require specific sequence of lifecycle events
to trigger. For example, WordPress issue 484 (Figure 3) can only
be triggered when the enclosing activity of the WebView is cre-
ated and paused. The bug in AntennaPod (Figure 5) can only be
triggered when the enclosing activity of theWebView enters theDe-
stroyed state. This observation indicates that generating sequence
of lifecycle events is often needed when testing ωBugs.

4.3.3 Effective oracles can be proposed for automated detection of
ωBugs. The ωBugs in our dataset were confirmed mainly based on
developers’ manual judgement. We carefully studied the measures
developers took to determine the existence of these ωBugs and
examined if the measures can be generalized as test oracles for
ωBugs. As a result, we made two observations.

First, 25 of the 124 ωBugs can be identified by comparing app
UI displays or resource usages before and after triggering lifecycle
events. As discussed in Section 4.1, ωBugs are commonly caused by
the misalignment between the lifecycle state of a WebView and that
of its enclosing activity/fragment. We observed that the majority
(23 / 35) of such bugs can be identified by comparing app UI displays
or resource usages before and after triggering lifecycle events. For
example, Wikipedia issue T63512 discussed in Section 4.2.3 can be
detected via comparing the app UI displays before and after recre-
ating the WebView’s enclosing activity (no matter which part of a
webpage was originally displayed by the WebView on the screen,
the top of the wedpage would be displayed after activity recreation).
WordPress issue 484 discussed in Section 4.1 is an another typical
example that can be detected by comparing the video resource
usages before and after pausing the WebView’s enclosing activity
(the video would continue to play even when the activity is paused).
This observation motivates us to leverage such comparisons as test
oracles to detect ωBugs that are caused by misaligned WebView
lifecycles (Section 5).

Second, another 12 of the 124 ωBugs can be identified by com-
paring the behaviors of WebViews and web browsers. Some app
developers took web browsers’ behaviors (e.g., Chrome and Fire-
Fox) as an oracle to identify abnormal webpage display issues. For

example, an ωBug in Save for Offline [45] that displays overlapped
content can be identified by comparing the page displayed by the
WebView and that displayed by the Android default browser, as
shown in Figure 7. This suggests the possibility of leveraging dif-
ferential testing to detect ωBugs.

4.3.4 Conventional test coverage criteria may not apply to ωBug
testing. Unlike a native app, the program logic of an app using
WebViews spans across its web code and native code. For example,
a popular game 2048 [2] only contains one activity and 136 lines
of Java code. Its complex game functionalities are implemented in
JavaScript. As a result, conventional test coverage criteria (e.g., code
coverage or activity coverage) leveraged by existing test generation
techniques [66, 84, 85, 96] may not be effective for testingωBugs. In
particular, JavaScript code coverage may not be applicable because
(1) the manifestation of manyωBugs does not require the execution
of JavaScript code and (2) it is hard to measure the total number of
JavaScript code since a WebView can display an unlimited number
of webpages. To effectively test ωBugs, new criteria measuring the
coverage of different WebView states and WebView’s interactions
with app native components are desirable. Future research can focus
on designing such coverage criteria to aid ωBugs testing.

Answer to RQ3: ωBugs’s manifestation highly depends on

the content of the loaded webpages and often requires the inter-

vention of lifecycle events. Automated oracles and new coverage

criteria are needed to effectively test apps using WebViews.

5 TESTING ωBUGS
Driven by our empirical findings, we propose an automated testing
technique ωDroid to detect common types of ωBugs in real-world
Android apps. The technique is designed based on two major ob-
servations (section 4.3): (1) lifecycle events are required to trigger
common ωBugs, and (2) ωBugs can be identified by comparing UI
displays and resource usages before and after triggering lifecycle
events. Inspired by the first observation, ωDroid generates test
cases by injecting predefined lifecycle event sequences on-the-fly
when the execution of an app reaches a screen containing Web-
View components. ωDroid then leverages the second observation
to compare app UI displays and resource usages before and after
the app handles the injected events to identify ωBugs.

Figure 8 presents a high-level overview of ωDroid, which con-
sists of three modules: Test Event Generator, Lifecycle Event Injector,
and Lifecycle Misalignment Oracle. Test Event Generator explores
the functionality of an app under test (AUT) by dynamically gen-
erating user and system events. During exploration, it detects the
existence of WebViews in the displayed components. If a WebView
is detected, it analyzes the UI hierarchy and builds a UI model for
the loaded webpage and invokes Lifecycle Event Injector. Lifecycle
Event Injector then triggers predefined lifecycle events sequence
and invokes Lifecycle Misalignment Oracle to detectωBugs. We now
discuss the details of each module.
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Figure 8: Overview of ωDroid

5.1 Test Event Generator

The Test Event Generator module generates test events for a given
AUT. It exercises the AUT using existing test generation tech-
niques for Android apps and builds UI models of WebViews for
further analysis. We implemented ωDroid on top of Monkey [7]
while it can be adapted to work with other test generation ap-
proaches [66, 69, 73, 76, 83–85, 96]. To detect the existence of Web-
Views, Test Event Generator analyzes the UI hierarchy of the screen
right after the AUT handles each triggered event. If WebViews
exist in the current screen, it builds a UI model for the loaded page.
The UI model will be used later by the Lifecycle Misalignment Ora-

cle module to detect ωBugs. The UI model of a webpage is a DOM
tree (illustrated in Figure 9) extracted using UiAutomation [57]. In
the UI model, leaf nodes represent elements in the webpage that
are displayed to user and non-leaf nodes indicate how leaf nodes
are organized in the WebView. Each node has a set of attributes:
class name, content description, checkable, checked, clickable, enabled,

focusable, focused, scrollable, long-clickable, password, and selected.
Challenge: A key challenge in Test Event Generator is to deter-

mine the time to build the UI model when a webpage is loaded. The
model should be built after the page is fully rendered; otherwise
the built model would be incomplete and cause imprecision in later
steps. However, the loading time of a page is non-deterministic,
depending on the page content and network speed.

Solution:We addressed the challenge by leveraging two com-
mon scenarios in which a page’s DOM structure changes when it
is being loaded. In the first scenario, a WebView displays either a
blank page or a simple “loading” message until it has fully loaded
the page. In this case, we have a trivial DOM structure for a while
in the beginning, followed by a steady non-trivial DOM structure
after the page has been loaded. In the second scenario, a WebView
renders a page progressively with light content (e.g., text) displayed
before heavy content (e.g. images and videos). In this case, we have
an evolving DOM structure that gradually becomes non-trivial and
steady after the page has been loaded. With these observations,
ωDroid delays the building of a UI model for a page until it detects
the existence of a steady non-trivial DOM structure or timeout.
If such DOM structure is detected, the current DOM tree will be
treated as the UI model for the loaded page. Note thatωDroidmon-
itors the changes of DOM structure instead of the changes of DOM
contents as the loaded contents may be dynamic (e.g., animations).

5.2 Lifecycle Event Injector

The Lifecycle Event Injector module injects three kinds of lifecy-
cle event sequences (they often trigger ωBugs according to our
empirical study) when the execution of the AUT reaches a screen

A

root

B

root

A

root

B

root

Visible

Structure unchanged Structure changed

Visible

Visible Visible

Figure 9: The UImodel of a webpage loaded byWebView and

the oracle to detect UI display inconsistence. A and B repre-

sent the UI models of the webpage before and after activity

restart. The green box represents the part of webpage that is

visible to users. The dashed lines represent that a node in A

is also found in B.

containing WebViews. These event sequences can cause an activity
to go through the following state changes: (1) paused and then
resumed, (2) stopped and then restarted, and (3) destroyed and then
recreated. By injecting such event sequences, ωDroid can explore
all the lifecycle states of a WebView’s enclosing activity/fragment
and simulate common user interactions on the app such as turning
screen off and on, pressing home button and re-entering the AUT,
and rotating devices. After the AUT handles each injected lifecycle
event sequence, ωDroid rebuilds a UI model for the webpage be-
ing displayed in the WebView using the mechanism discussed in
Section 5.1. The model is then fed into the Lifecycle Misalignment

Oracle module to detect ωBugs.

5.3 Lifecycle Misalignment Oracle

The Lifecycle Misalignment Oracle module relies on two rules to
detect ωBugs. The rule for detecting UI inconsistencies is based on
a common sense expectation [100] that the displayed content of a
WebView after activity restart should be consistent with that before
the restart. The rule for detecting unpaused resources is based on the
expectation that when the enclosing activity is paused, resources
loaded by WebViews should be paused as well. The current version
of ωDroid only detects unpaused video resources. We leave the
detection of other kinds of resources as futurework.ωDroid reports
an ωBug if any of the two rules is violated.

Challenge:While the detection of unpaused video resources can
be implemented by testing sound from video after the WebView’s
enclosing activity is paused, it is non-trivial to define an oracle to
detect UI inconsistencies of WebViews. Checking the differences of
screenshots [100] is inadequate. As explained in Section 5.1, many
webpages contain elements with dynamic effects such as anima-
tions or videos. Such elements can result in different screenshots
even when the webpage contents are the same. Furthermore, some
apps may handle activity restarts by saving and restoring the scroll
positions of the displayed webpages. The restored scroll positions
can be slightly different from the original ones before the activity
restarts. Such differences are usually tolerable by users but screen-
shots are sensitive to subtle changes. As a result, simply comparing
screenshots may lead to false positives in ωBugs detection.



ASE ’18, September 3–7, 2018, Montpellier, France Jiajun Hu, Lili Wei, Yepang Liu, Shing-Chi Cheung, and Huaxun Huang

Solution: To precisely detect ωBugs, Lifecycle Misalignment Or-

acle module compares the webpages’ tree-based UI models before
and after the AUT handles the injected lifecycle events. Such UI
models ignore the dynamic effects of webpage elements and thus
help reduce false positives in bug detection. The comparison oracle
is designed based on the intuition that all the previously-displayed
content in a WebView should be found in the page after the WebView’s

enclosing activity restarts, and at least part of the previously-displayed

content should still be displayed after the activity restarts.
Mapping UI nodes. Figure 9 illustrates how to compare the tree-

based UI models. The models with label A and B represent the
UI models of the webpages before and after the enclosing activity
restarts. To compare the UI models, Lifecycle Misalignment Ora-

cle first maps the visible nodes in A with nodes in B. This is neces-
sary because the elements in the displayed webpages do not have
unique identifiers. The mapping is based on the tree structure of the
UI models and the attributes contained in each node. If the struc-
ture of a loaded webpage does not change, a node n in A is first
compared with a node n′ in B that is located at the corresponding
position in the UI model. Node n is successfully mapped to node n′
only if n′ shares the same attribute values with n. If the structure
of the webpage changes, we cannot pair nodes according to their
positions because one node in A may be placed at another position
in B. In such cases, Lifecycle Misalignment Oracle pairs the nodes in
A and B according to their attributes. A node in A is successfully
found in B if there exists a node in B whose attribute values are the
same with that of the node in A.

Reporting inconsistencies. After mapping the nodes between UI
models, Lifecycle Misalignment Oracle will report UI inconsistencies
if any visible node in A cannot be mapped to nodes in B or all visible
nodes in A become invisible in B.

6 EVALUATION

In this section, we evaluate the ability of ωDroid in detecting
real-world ωBugs by answering two research questions:

• RQ4 (Effectiveness andPracticality of ωDroid):CanωDroid
effectively detect ωBugs in real-world Android apps of concern to

app developers?

• RQ5 (Usefulness of Lifecycle Events and Test Oracles): Are

the lifecycle events injected by ωDroid and the test oracles adopted

by ωDroid useful to identify anomalous app behaviors induced by

ωBugs?

6.1 Experimental Subjects and Setup

We conducted evaluation based on the 293 apps selected in Section 3.
Among them, we excluded the 51 apps which were used to form our
empirical study dataset. We further filtered out those apps that do
not have any code revisions within the past six months for evalua-
tion. This is because we are only interested in actively-maintained
apps since answering RQ4 requires developers’ feedback. As a re-
sult, we obtained 146 apps for the experiments. We ran ωDroid on
the latest version of these apps to check if ωDroid can detect new
ωBugs in them. We followed the practice adopted by an existing
study [85] to set up our experiments and ran ωDroid for one hour
to test each subject. The tests were executed on Android emulators

running Android 6.0 (Marshmallow), which was the most popular
Android system version [5] at the time of our experiments.

To answer RQ5, we built two baseline methods for comparisons:
• Baseline I: Test Event Generator : This baseline leverages Test
Event Generator to trigger events and detect ωBugs based on
software crashes (a common test oracle used in existing stud-
ies [85, 96]).

• Baseline II: Test Event Generator + Lifecycle Event Injector : Com-
paring to Baseline I, Baseline II additionally leverages Lifecycle
Event Injector to inject lifecycle events when app subjects are
being executed. It also detects ωBugs based on software crashes.
For these two baselines, we reported the number of unique

crashes following the approach adopted by Su et al. [96]. We did not
prepare an additional baseline in which only Lifecycle Misalignment

Oracle is kept because our proposed oracle targets UI inconsisten-
cies occurred between lifecycle events, thus it cannot work without
Lifecycle Event Injector.

We manually inspected all ωBugs reported by ωDroid to cate-
gorize them as true positives or false positives. For each detected
ωBug, ωDroid outputs the screenshots, the name of foreground
activity when the bug is detected, and an event trace to trigger
the bug. With such information, we reproduced each ωBug and
categorized it as a true positive only if the oracle violation was
induced by the inserted lifecycle events. As such, an oracle viola-
tion on a webpage containing dynamic elements will be treated a
false positive because the page content can become “inconsistent”
even without triggering lifecycle events. We further reported the
ωBugs that are categorized as true positives to the app developers
for confirmation. The experiments were conducted on a PC with
an Intel Core i5 CPU @3.2 GHz and 8GB RAM.

6.2 Results for RQ4

ωDroid reported ωBugs in 31 of the 146 apps. Table 2 shows the
results for these 31 apps, including app name, KLOC, number of TPs,
number of FPs, and the IDs of our submitted bug reports. Note that
multiple failures can be induced by the same ωBug. We consider
two failures as duplicates (caused by the same ωBug) if they are
manifested on the same WebView of the same activity/fragment
with the same consequences. For example, ωDroid reported two
failures in the same WebView that loads log-in pages of different
social network websites when testing Twidere [56]. Although the
loaded webpages are different when the two failures occurred, the
failures were considered as duplicates since they demonstrate the
same consequences that the webpage reloads without restoring its
previous states after recreating the enclosing activity.

In total, ωDroid reported 36 unique bugs and 30 of them are
TPs (83.3% precision). All the three types of event sequences that
can be injected by Lifecycle Event Injector exposed ωBugs that were
categorized as TPs. For example, Forecastie [21] uses a WebView
to load a weather map. ωDroid detected a bug (issue 275) that any
navigations on the map will be lost after triggering lifecycle events
that destroy and recreate the enclosing activity. Another example
is in Reddinator [41]: the video in a WebView does not stop even
after the enclosing activity is sent to the background.

We inspected the six FPs reported by ωDroid and identified
two major reasons for the imprecision. Four of the FPs were due
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Table 2: Evaluation Result of ωDroid. Bug ID with superscript “f” means that the bug has been fixed, with superscript “c”

means that the bug has been confirmed, and with superscript “n” means that developers decided not to fix the “bug”.

Id App Name KLOC TP FP Bug ID(s) Id App Name KLOC TP FP Bug ID(s)

1 Serval Mesh [46] 112 1 0 #136 17 Cherry [14] 1.9 1 0 #7c

2 arXiv mobile [10] 3.4 1 0 #16 18 Termux [54] 9.3 1 0 #664
3 EteSync [19] 12.5 1 0 #28f 19 Kimai [29] 1.9 1 0 #30c

4 dandelion* [16] 8 0 1 20 Barcode Scanner [11] 43.2 1 0 #989n

5 Twidere [56] 19.4 1 1 #1110 21 ForRunners [22] 5.1 0 1
6 Budget Watch [12] 7.6 1 0 #159f 22 sg [47] 13.2 1 0 #64c

7 Rental Calc [44] 6.7 1 0 #40f 23 Shortyz [48] 16.9 3 0 #134,#135
8 Vanilla Music [58] 20.4 1 0 #767n 24 Crossword [15] 1.1 1 0 #2c

9 Forecastie [21] 3 2 0 #274,#275 25 Gift Card Guard [25] 1.6 1 0 #42f

10 Snapcast [51] 17.6 1 0 #384 26 OpenVPN for Android [36] 60.6 1 0 #864c

11 Vespucci [59] 71.2 1 0 #691f 27 Web Opac [60] 36.9 0 1
12 RasPi Check [40] 7.7 1 0 #179c 28 MTG Familiar [32] 21.1 1 0 #373n

13 Freifunk Auto Connect [23] 2.5 1 0 #20 29 LinCal [30] 2.5 1 0 #14c

14 Padland [37] 4.6 0 1 30 Diary [17] 2.6 2 0 #47f , #52n

15 Polar Clock [39] 0.2 0 1 31 Drinks [18] 1.3 1 0 #72
16 SMS Backup+ [50] 11.2 1 0 #878f Total Num of TPs: 30; Total Num of FPs: 6

to long page loading time, which caused timeout in the UI model
generation process and thusωDroid built incomplete UI models for
the webpages. For example, the bug in Padland [37] was reported
because ωDroid compared two incomplete UI models before and
after injecting lifecycle events. The other two FPs were induced by
dynamic content in webpages. For example, Polar Clock [39] uses
a WebView to load a webpage containing a timer, which constantly
changes over time. As a result, the UI model of the webpage is
simultaneously changing and induces FPs.

To evaluate the practicality of ωDroid, we reported the 30 TPs
found by ωDroid to the app developers for their feedback. In each
bug report, we provided the reproduction steps, screenshots, and
possible solutions. So far, we have received developers’ replies for
18 of the reported bugs. Developers confirmed 14 of the 18 bugs
and quickly fixed seven of them. They also provided positive feed-
back to our reported bugs. For example, developers of Kimai [29]
responded “Good catch! Having always rotation lock on so didn’t

quite get that yet. Happy about PRs (pull requests);)". The comment
shows the developers’ interest on the reported bug but they failed
to identify it as they did not inject lifecycle events when testing the
app. This shows that ωDroid can detect unknown ωBugs that are
of developers’ concern. For the other four bugs, three of them were
considered not harmful by the developers and therefore there is no
need to fix them. One of them (MTG Familiar [32]) was acknowl-
edged by developers but they would not fix it because WebViews
will be replaced in their app. Note that our oracle is based on com-
mon expectations of app responses to lifecycle events [100]. There
may be exceptional cases that app developers consider violating
such expectations is tolerable. However, this is not common in our
evaluation as we only observed three cases.

Answer to RQ4: ωDroid can effectively detectωBugs in An-
droid apps with high precision. ωDroid is practically useful
and can find ωBugs that are of developers’ concern.

6.3 Results for RQ5

To show the usefulness of the injected lifecycle events and our
proposed oracles, we compared the results of ωDroid and the
two baseline methods. Since crash is a general oracle that can help
identify bugs beyondωBugs, when evaluating the baseline methods
we only counted the crashes related to WebView. We consider a
crash related toWebView if the crash notificationmessagementions
WebView or there are WebView APIs in the crash stack.

We observed that ωDroid outperformed the baseline methods
by detecting significantly more ωBugs. As discussed in the previ-
ous section, ωDroid detected 30 true bugs. In contrast, baseline I
failed to detect any WebView-related crash, while baseline II only
detected one WebView-related crash for the app Shortyz [48]. The
crash occurred after destroying and recreating activities. It is worth
mentioning that the crash can also be detected by ωDroid since
crashes also cause UI display inconsistencies. Such results indicate
that injecting lifecycle events can help expose WebView-related
crash yet such crashes are not common as we only observed one
case in our evaluation. Specific oracles are thus needed to detect
common types of ωBugs. By combining Lifecycle Event Injector and
Lifecycle Misalignment Oracle,ωDroid can detectωBugs effectively.

Answer to RQ5: ωDroid significantly outperformed the
baseline methods, which confirms that our proposed oracles
are useful in identifying anomalous app behaviors induced by
common ωBugs. Without effective oracles, injecting lifecycle
events alone has limited effect on exposing ωBugs.

7 DISCUSSIONS

7.1 Threads to Validity

Empirical study subject selection. Our empirical findings are
obtained by studying ωBugs in our selected Android apps. The
findings are thus affected by the representativeness of these subjects.
To mitigate this threat, we collected 124ωBugs from 51 open-source
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android apps that are popular, large-scale, well-maintained, and
diversified. Based on the empirical study, we proposed an automated
ωBugs testing technique ωDroid, which successfully detected 30
previously-unknownωBugs. This shows that our empirical findings
can be generalized to other apps.

Keywords for ωBug collection. When collecting code com-
mits and bug reports related to ωBugs, we only used general key-
words “webview” and “javascript” while different projects may use
different keywords to refer to WebView components. For exam-
ple, in WordPress [64], WebViews are often called “posts” since
WordPress uses WebViews to display blog posts. However, such
app-specific keywords are hard to collect. Using them as search
keywords can also lead to many irrelevant results. Therefore, we
only used two general keywords, which already helped collect a
considerable number of ωBugs.

Errors in manual inspections. Our manual inspection may
be subject to errors. To reduce human mistakes, four co-authors
independently performed manual inspections and cross-checked
each other’s results for consistency.

7.2 Limitations of ωDroid
Limitation of Test Event Generator. ωDroid leverages existing
techniques to test apps containing WebViews. No existing work
targets at generating test inputs to reach and thoroughly exercise
all WebViews contained in an app. As a result, there is no guarantee
that the test cases generated by ωDroid can reach all WebViews
in an app and fully exercise their functionalities. This may leave
some ωBugs undetected. In future, we plan to improve the test case
generation module of ωDroid to achieve more thorough testing.

Limitation ofWebViewUImodel.ωDroid builds the UImodel
of a webpage based on the information given by UiAutomation [57].
Our UI models are thus subject to imprecisions caused by the limi-
tations of UiAutomation (e.g., UiAutomation may fail to precisely
model complicated webpages). In future, we also plan to explore
alternative ways to define the UI model and improve the Lifecycle
Misalignment Oracle module in ωDroid.

Handling multiple WebView instances. If one screen con-
tains multiple WebView instances,ωDroid assumes that their order
remains unchanged during the testing process. This may induce
false positives if the order of the WebView instances changes after
ωDroid injects lifecycle events. However, in our experiments, we
did not observe any false positives caused by this limitation.

8 RELATEDWORK

8.1 WebView Security

WebViews have posed various threats to an app’s security. At-
tacks on WebViews in Android system were first studied by Luo
et al. [81, 82]. Since then, researchers have found more and more
types of attacks onWebViews and proposed various defending tech-
niques. For example, to prevent user private data from being leaked
through JavaScript Interface, many techniques have been proposed
to aid the detection and monitoring of cross-language information
flow. Typical ones are BavelView [91], Spartan Jester [93], and Hy-
briDroid [77]. Existing work [68] has also shown that malicious
JavaScript code can invoke native methods and gain access to local
resources such as files through JavaScript Interface. Most recently,

Li et al. [78] uncovered Cross-App WebView Infection (XAWI), a
new attack that allows a remote adversary to spread malicious
web content across different apps’ WebView instances and acquire
stealthy control of these apps. Our work differs from these exist-
ing studies since we do not limit our scope in security issues but
conduct a more comprehensive study on real-world ωBugs.

8.2 Android Lifecycle Errors

Android app developers can easily make mistakes in managing
app component lifecycles. To help improve app quality, Zaeem el
al. [100] proposed a model-based testing technique QUANTUM to
test user-interaction features of Android apps. QUANTUM gener-
ates test oracles based on the common sense expectations of app
responses against user interactions. QUANTUM requires users to
manually build an activity transition model for an app under test
and it leverages trivial oracles such as screenshot differences for
finding bugs. Our technique ωDroid differs from QUANTUM as
it is fully automated and leverages the comparison of tree-based
UI models for bug detection. Adamsen et al. [65] proposed Thor,
which injects neutral event sequences (including lifecycle event
sequences) into existing test cases based on the intuition that neu-
tral event sequences should not affect the outcome of a test case.
However, Thor relies on manually-written assertions to identify
bugs. This is different from ωDroid, which is equipped with au-
tomated oracles. Shan et al. [94] proposed KREfinder to statically
detect data lost when lifecycle events are triggered. This approach
may not be applicable to WebView because the “data” of WebView
usually reside in the loaded webpages but their approach does not
support across-language data flow analysis.

9 CONCLUSION AND FUTUREWORK

In this paper, we conducted an empirical study on 124 ωBugs col-
lected from popular open-source Android apps. Our study identified
the common root causes and consequences of ωBugs, and inves-
tigated different factors that are needed to manifest ωBugs. Our
empirical study provides important insights that can guide future
research on ωBug testing and diagnosis. Based on our empirical
findings, we proposed an automated testing technique ωDroid to
detect common types of ωBugs in Android apps. The evaluation of
ωDroid on 146 subjects showed that ωDroid can effectively detect
previously-unknown ωBugs in real-world Android apps that are of
developers’ concern. In future, we plan to collect more ωBugs to
perform a larger-scale empirical study. We also plan to study how
to effectively generate user/system events and appropriate web
content to thoroughly exercise WebView instances and leverage
differential testing to expose more ωBugs.
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