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ABSTRACT

Android ecosystem is heavily fragmented. The numerous
combinations of different device models and operating sys-
tem versions make it impossible for Android app developers
to exhaustively test their apps. As a result, various compat-
ibility issues arise, causing poor user experience. However,
little is known on the characteristics of such fragmentation-
induced compatibility issues and no mature tools exist to
help developers quickly diagnose and fix these issues. To
bridge the gap, we conducted an empirical study on 191
real-world compatibility issues collected from popular open-
source Android apps. Our study characterized the symp-
toms and root causes of compatibility issues, and disclosed
that the patches of these issues exhibit common patterns.
With these findings, we propose a technique named FicFinder
to automatically detect compatibility issues in Android apps.
FicFinder performs static code analysis based on a model
that captures Android APIs as well as their associated con-
text by which compatibility issues are triggered. FicFinder
reports actionable debugging information to developers when
it detects potential issues. We evaluated FicFinder with 27
large-scale open-source Android apps. The results show that
FicFinder can precisely detect compatibility issues in these
apps and uncover previously-unknown issues.

CCS Concepts

•General and reference→Empirical studies; •Software
and its engineering → Software testing and debug-
ging; Software reliability; Software performance; •Human-
centered computing → Smartphones;
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1. INTRODUCTION
Android is the most popular mobile operating system with

over 80% market share [38]. Due to its open nature, a large
number of manufacturers (e.g., Samsung, LG) choose to de-
velop their mobile devices by customizing the original An-
droid systems. While this has led to the wide adoption of

Android smartphones and tablets, it has also induced the
heavy fragmentation of the Android ecosystem. The frag-
mentation causes unprecedented challenges to app develop-
ers: there are more than 10 major versions of Android OS
running on 24,000+ distinct device models, and it is imprac-
tical for developers to fully test the compatibility of their
apps on such devices [4]. In practice, they often receive
complaints from users reporting the poor compatibility of
their apps on certain devices and have to deal with these
issues frequently [7, 53].

Existing studies have investigated the Android fragmen-
tation problem from several aspects. For example, Han et
al. were among the first who studied the compatibility is-
sues in Android ecosystem and provided evidence of hard-
ware fragmentation by analyzing bug reports of HTC and
Motorola devices [51]. Linares-Vásquez et al. [59] and Mc-
Donnell et al. [63] studied how Android API evolutions can
affect the quality (e.g., portability and compatibility) and
development efforts of Android apps. Recently, researchers
also proposed techniques to help developers prioritize An-
droid devices for development and testing by mining user
reviews and usage data [55, 62]. Although such pioneer work
helped understand Android fragmentation, little is known on
the root cause of fragmentation-induced compatibility issues
and how developers fix such issues in reality. In addition,
existing studies have not fully investigated these issues down
to app source code level and hence cannot provide deeper
insights (e.g., common issue patterns and fixing strategies)
to ease debugging and bug fixing tasks. As a result, there
are no mature tools to help developers combat Android frag-
mentation and improve their apps’ compatibility.

To better understand fragmentation-induced compatibil-
ity issues in Android apps, we conducted an empirical study
on 191 real issues collected from popular open-source An-
droid apps. The study aims to explore the following three
research questions. For ease of presentation, we will refer to
Fragmentation-Induced Compatibility issues as FIC issues.

• RQ1: (Issue type and root cause): What are the
common types of FIC issues in Android apps? What are
their root causes?
• RQ2: (Issue symptom): What are the common symp-

toms of FIC issues in Android apps?
• RQ3: (Issue fixing): How do Android developers fix

FIC issues in practice? Are there any common patterns?

By investigating these research questions, we made inter-
esting findings. For example, we found that FIC issues in
Android apps can cause both functional and non-functional
consequences and observed five major root causes of these
issues. Among these root causes, frequent Android platform
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API evolution and problematic hardware driver implemen-
tation are two dominant ones. Such findings can provide
developers with guidance to help avoid, expose, and diag-
nose FIC issues. Besides, we observed from the patches of
the 191 FIC issues that they tend to demonstrate common
patterns. To fix FIC issues, developers often adopted similar
workarounds under certain problematic software and hard-
ware environments. Such patterns can be learned and lever-
aged to help automatically detect and fix FIC issues.

Based on our findings, we designed a static analysis tech-
nique, FicFinder, to automatically detect FIC issues in An-
droid apps. FicFinder is driven by an API-context pair
model proposed by us. The model captures Android APIs
that suffer from FIC issues and the issue triggering contexts.
The model can be learned from common issue fixing pat-
terns. We implemented FicFinder on Soot [57] and applied
it to 27 non-trivial and popular Android apps. FicFinder
successfully uncovered 14 previously-unknown FIC issues in
these apps. We reported these issues to the original devel-
opers of the corresponding apps. So far, we have received
acknowledgment from developers on eight reported issues.
Five of them were considered critical and have been quickly
fixed. These results demonstrate the usefulness of our em-
pirical findings and FicFinder. To summarize, we make the
following major contributions in this paper:

• To the best of our knowledge, we conducted the first em-
pirical study of FIC issues in real-world Android apps at
source code level. Our findings can help better understand
and characterize FIC issues while shedding lights on fu-
ture studies related to this topic. Our dataset is publicly
available to facilitate future research [23].
• We proposed an API-context pair model to capture the

common patterns of FIC issues in Android apps. With
this model, we can generalize developers’ knowledge and
practice in handling FIC issues and transfer such knowl-
edge to aid many software engineering tasks such as au-
tomated issue detection and repair.
• We designed and implemented a technique, FicFinder, to

automatically detect FIC issues in Android apps. The
evaluation of FicFinder on 27 real-world subjects shows
that it can effectively detect FIC issues and provide useful
information to facilitate issue diagnosis and fixing.

2. BACKGROUND
While Android provides vendors of mobile devices with an

open and flexible software infrastructure to quickly launch
their products, it complicates the task of developing reliable
Android apps over these devices. One of the known compli-
cations is induced by the infamous Android fragmentation
problem that arises from the need to support the prolifera-
tion of different Android devices with diverse software and
hardware environments [62]. Two major causes account for
the severity of fragmentation.
• Fast evolving Android platforms.Android platform is evolv-

ing fast. Its API specifications and development guide-
lines constantly change. As shown in Table 1, the Android
devices on market are running very different OS versions
from 2.2 to 6.1 with API levels from level 8 to level 23 [20].
• Myriad device models. To meet market demands, manu-

facturers (e.g., Samsung) keep releasing new Android de-
vice models with diverse hardware (e.g., different screen
sizes, camera qualities, and sensor compositions) and cus-
tomize their own Android OS variants by modifying the

Table 1: Android OS version distribution

Version Codename API level Distribution
2.2 Froyo 8 0.1%

2.3.3 - 2.3.7 Gingerbread 10 2.6%
4.0.3 - 4.0.4 Ice Cream Sandwich 15 2.2%

4.1.x
Jelly Bean

16 7.8%
4.2.x 17 10.5%
4.3 18 3.0%
4.4 Kitkat 19 33.4%
5.0

Lollipop
21 16.4%

5.1 22 19.4%
6.0 Marshmallow 23 4.6%

Lower-level

System

Android Apps

Application Framework

Inter-Process Communication Proxies

Android System Services and Managers

Hardware Abstraction Layer

Linux Kernel (with Hardware Drivers)

Higher-level

System

Figure 1: Android System Architecture [5]

original Android software stack. Device manufacturers
make two typical customizations: (1) they implement lower-
level system (hardware abstraction layer and hardware
drivers) to allow the higher level system (Figure 1) to be
agnostic about the lower-level driver implementations that
are specific to device models; (2) they modify the higher
level system to meet device models’ special requirements
(e.g., UI style). Such customizations induce variations
across device models (see examples in Section 4.1).
Android fragmentation creates burden to app developers,

who need to ensure the apps that they develop offer com-
patible behavior on diverse device models, which support
multiple OS versions. This requires tremendous coding and
testing efforts. In reality, it is impractical for developers to
exhaustively test their apps to cover all combinations of de-
vice models and OS versions. Hence, compatibility issues
have been frequently reported by app users [51, 55, 62].

3. EMPIRICAL STUDY METHODOLOGY
This section presents our dataset and analysis method to

answer the three research questions RQ1–3.

3.1 Dataset Collection
Step 1: selecting app subjects. To study the research

questions RQ1–3, we need to dig into the following data
from real-world Android apps: (1) bug reports and discus-
sions, (2) app source code, and (3) bug fixing patches and
related code revisions. To accomplish that, we searched for
suitable subjects on three major open-source Android app
hosting sites: F-Droid [22], GitHub [24], Google Code [25].
We targeted subjects that have: (1) over 100,000 downloads
(popular), (2) a public issue tracking system (traceable), (3)
over three years of development history with more than 500
code revisions (well-maintained), and (4) over 10,000 lines
of code (large-scale). We adopted these criteria because the
FIC issues in the subjects such selected are likely to affect a
large user population using diverse device models.

We manually checked popular open-source apps on the
above-mentioned three platforms and found 27 candidates.
Table 2 lists some examples. The table gives the demo-
graphics of each app, including: (1) project start time, (2)
category, (3) brief description of functionality, (4) user rat-
ing, (5) number of downloads on Google Play store, (6) lines
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Table 2: Android Apps Used in Our Empirical Study (1M = 1,000,000)

App Name
Project
Start
Time

Category Description Rating Downloads KLOC # Revisions # Issues # FIC Issues

CSipSimple [18] 04/2010 Communication Internet call client 4.3/5.0 1M - 5M 59.2 1,778 2,997 80
AnkiDroid [8] 07/2009 Education Flashcard app 4.5/5.0 1M - 5M 58.1 8,282 3,002 34
K-9 Mail [28] 10/2008 Communication Email client 4.3/5.0 5M - 10M 86.7 6,116 7,392 34
VLC [42] 11/2010 Media & Video Media player 4.3/5.0 10M - 50M 28.3 6,868 544 24

AnySoftKeyboard [10] 05/2009 Tools 3rd-party keyboard 4.3/5.0 1M - 5M 70.7 2,788 1,634 19

Table 3: Keywords used in issue identification

device compatible compatibility samsung
lge sony moto lenovo
asus zte google htc

huawei xiaomi android.os.build

of code, (7) number of code revisions, (8) number of issues
documented in its issue tracking system. The demograph-
ics show that the selected apps are popular (e.g., with mil-
lions of downloads) and highly rated by users. Besides, their
projects all have a long history and are well-maintained, con-
taining thousands of code revisions.

Step 2: identifying FIC issues. To locate FIC issues
that affected the 27 candidate apps, we searched their source
code repositories for two types of code revisions:
• The revisions whose change log contains fragmentation re-

lated keywords. Table 3 lists these case non-sensitive key-
words, including the name of top Android device brands.
• The revisions whose code diff contains the keyword “an-

droid.os.build”. We selected this keyword because the
android.os.Build class encapsulates device information
(e.g., OS version, manufacturer name, device model) and
provides app developers with the interface to query such
device information and adapt their code accordingly.
The keyword search returned many results, suggesting

that all of our 27 candidate apps might have suffered from
various FIC issues. We selected the five apps with the most
number of code revisions and manually examined these re-
visions. Table 2 shows the information of the five apps. In
total, 1,082 code revisions were found from the selected five
apps. We carefully checked these revisions and understood
the code changes. After such checking, we collected a set
of 263 revisions, concerning 191 FIC issues. The number of
revisions is larger than the number of issues because some is-
sues were fixed by multiple revisions. Table 2 (last column)
reports the number of found issues for each app subject.
These 191 issues form the dataset for our empirical study.

3.2 Data Analysis
To understand FIC issues and answer our research ques-

tions, we conducted the following tasks. First, for each issue,
we (1) identified the issue-inducing APIs, (2) recovered the
links between issue fixing revisions and bug reports, and (3)
collected and studied related discussions from online forums
such as Stack Overflow [39]. Second, we followed the pro-
cess of open coding, a widely-used approach for qualitative
research [46], to analyze our findings and classify each issue
by its type, root cause, symptom and fixing pattern.

4. EMPIRICAL STUDY RESULTS

4.1 RQ1: Issue Type and Root Cause
Although Android fragmentation is pervasive [51], resear-

chers and practitioners have different understanding of the
problem [30]. So far, there is no standard taxonomy to cat-
egorize FIC issues. Yet, such a taxonomy is crucial to un-

derstand how FIC issues in each category are induced and
thereby mechanically detected. This motivates us to man-
ually check the 191 issues in our dataset and construct a
taxonomy following an approach adopted by Ham et al. [50].
Specifically, we first categorized the issues into two general
types: device-specific and non-device-specific. The former
type of issues can only manifest on a certain device model,
while the latter type of issues can occur on most device mod-
els with a specific API level. Then we further categorized the
two types of issues into subtypes according to their respec-
tive root causes. Table 4 presents our categorization results.
In total, 112 (59%) of the 191 issues are device-specific and
the remaining 79 are non-device-specific.

4.1.1 Device-Specific FIC Issues

Device-specific FIC issues occur when invoking the same
Android API results in inconsistent behavior on different
device models. These issues can cause serious consequences
such as crashes and lead to poor user ratings [55]. We found
112 such issues in our dataset and identified three primary
reasons for the prevalence of these issues in Android apps.

Problematic Driver Implementation. Out of the 112
issues, 56 are caused by the problematic implementations
of various hardware drivers. The running of many Android
apps relies on low-level hardware drivers. Different driver
implementations can make an app behave differently across
device models. To ensure consistent app behavior over mul-
tiple device models, app developers need to carefully adapt
the code that invokes those Android APIs, which directly or
indirectly depend on low-level hardware drivers. However,
there are hundreds of such APIs on Android platform. It is
impractical for developers to conduct adequate compatibil-
ity test covering all device models whenever they use such
an API in their apps. Compatibility issues can be easily left
undetected before the release of their apps.

Typical examples we observed are the issues caused by
the proximity sensor APIs. According to the API guide,
proximity sensors can sense the distance between a device
and its surrounding objects (e.g., users’ cheek) and invoking
getMaximumRange() will return the maximum distance the
sensor can detect [36]. In spite of such specified API guide,
FIC issues often arise from the use of proximity sensors in
reality. For instance, on devices such as Samsung Galaxy
S5 mini or Motorola Defy, the return value of getMaxi-

mumRange() may not indicate the real maximum distance
the sensor can detect. As a result, the proximity distance
is incorrectly calculated, leading to unexpected app behav-
iors [3]. CSipSimple developers filed another example in its
issue 353 [19]. The issue occurred on Samsung SPH-M900
whose proximity sensor API reports a value inversely pro-
portional to the distance. This causes the app to compute a
distance in reverse to the actual distance. The consequence
is that during phone calls with CSipSimple, the screen would
be touch sensitive when users hold their phones against their
ears (users may accidentally hang up the call in such cases),
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Table 4: Issue types and root causes for their occurrences

Type Root Cause Issue Example # of FIC Issues

Device-Specific
Problematic driver implementation CSipSimple bug #353 56

OS customization Android bug #78377 36
Peculiar hardware composition VLC bug #7943 20

Non-Device-Specific
Android platform API evolution AnkiDroid pull request #130 67
Original Android system bugs Android #62319 12

boolean proximitySensorActive = getProximitySensorState();
boolean invertProximitySensor =
        android.os.Build.PRODUCT.equalsIgnoreCase("SPH-M900");
if (invertProximitySensor) {
    proximitySensorActive = !proximitySensorActive;
}

1.
2. +
3. +
4. +
5.
6. +

Figure 2: CSipSimple issue 353 (Simplified)

but would be touch insensitive when the users move their
phones away from their ears. CSipSimple developers later
tracked down the problem and fixed the issue by adapting
their code to specially deal with the Samsung SPH-M900
devices, as shown in Figure 2.

OS customization. 36 of the 112 device-specific issues
occurred due to non-compliant OS customizations made by
Android device manufacturers. There are three basic types
of customizations: (1) functionality modification, (2) func-
tionality augmentation, and (3) functionality removal. In
our study, we observed that all these three types of cus-
tomizations can result in device-specific issues.
• Functionality modifications. Android device manufactur-

ers often modify the original implementations of Android
OS to facilitate customization. However, their modified
versions may contain bugs or do not fully comply with
the original Android platform specifications. This can
easily cause FIC issues. For example, several issues in
AnkiDroid, AnySoftKeyboard and VLC were caused by a
bug in the MenuBuilder class of the appcompat-v7 sup-
port library on certain Samsung and Wiko devices run-
ning Android 4.2.2, which was documented in Android
issue tracker (Issue 78377) [6]. The bug report contains
intensive discussions among many Android app develop-
ers, whose apps suffered from crashes caused by this bug.
• Functionality augmentation. Android device manufactur-

ers often add new features to the original Android OS
to gain advantages in market competition. Such func-
tionality augmentation brings burden to app developers,
who need to ensure that their apps correctly support the
unique features on some devices and at the same time
remain compatible on other devices. Unfortunately, this
is a non-trivial task and can easily cause FIC issues. For
example, after Samsung introduced the multi-window fea-
ture on Galaxy Note II in 2012, AnkiDroid and CSipSim-
ple developers attempted to revise their apps to support
this feature. However, after several revisions, the devel-
opers of CSipSimple finally chose to disable the support
in revision 8387675 [18], because this new feature was not
fully supported by some old Samsung devices and they
failed to find a workaround to guarantee compatibility.
• Functionality removal. Some components in the original

Android OS can be pruned by device manufacturers if
they are considered useless on certain devices. An app
that invokes APIs relying on the removed system compo-
nents may crash, causing bad user experience. For exam-
ple, issue 289 of AnySoftKeyboard [10] reported a crash
on Nook BNRV350. On this device, the input method set-
ting functionality is by default unavailable; hence invoking
the API to start input method setting activity crashed the
app. Developers fixed this issue in revision b68951a [10]

Intent startSettings =  
    new Intent(android.provider.Settings.ACTION_INPUT_METHOD_SETTINGS); 
startSettings.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK); 
try { 
    mAppContext.startActivity(startSettings); 
} catch (ActivityNotFoundException notFoundEx) { 
    showErrorMessage("Does not support input method settings"); 
}

1. 
2. 
3. 
4. + 
5. 
6. + 
7. + 
8. + 

Figure 3: AnySoftKeyboard issue 289 (Simplified)

by swallowing the ActivityNotFoundException and dis-
playing a hint as shown in Figure 3. Another example is:
VLC developers disabled the invocation of navigation bar
hiding APIs on HTC One series running an Android OS
prior to 4.2 in revision 706530e [42], because navigation
bar was eliminated on these devices and invoking related
APIs would lead to the killing of the app by the OS.
Peculiar hardware composition. The remaining 20

device-specific issues occurred due to the diverse hardware
composition on different Android device models. It is com-
mon that different Android device models may utilize dif-
ferent chipsets and hardware components with very differ-
ent specifications [53]. Such diversity of hardware compo-
sition can easily lead to FIC issues, if app developers do
not carefully deal with the peculiarities of all hardware vari-
ants. For example, SD card has caused much trouble in
real-world apps. Android devices with no SD card, one SD
card and multiple SD cards are all available on market. Even
worse, the mount points for large internal storage and exter-
nal SD cards may vary across devices. Under such circum-
stances, app developers have to spend tremendous effort to
ensure correct storage management on different device mod-
els. This is a tedious job and developers can often make
mistakes. For instance, issue 7943 of VLC [43] reported
a situation, where the removable SD card was invisible on
ASUS TF700T, because the SD card was mounted to a spe-
cific point on this device model. Besides ASUS devices, VLC
also suffered from similar issues on some Samsung and Sony
devices (e.g., revisions 50c3e09 and 65e9881 [42]), whose SD
card mount points were uncommon. To fix these issues,
VLC developers hardcoded the directory path in order to
correctly recognize and read data from SD cards on these
devices. Besides SD cards, different screen sizes frequently
caused compatibility issues (e.g., revision b0c9ae0 of K-9
Mail [28], revision 6b60085 of AnkiDroid [8]).

4.1.2 Non-Device-Specific FIC Issues

We observed 79 non-device-specific issues in our dataset.
Their occurrences were mostly due to Android platform evo-
lution or bugs in the original systems. These issues are in-
dependent from device models and can affect a wide range
of device models running specific Android OS versions.

Android platform API evolution. Android platform
and its APIs evolve fast. On average, there are 115 API
updates per month [63]. These updates may introduce new
APIs, deprecate old ones, or modify API behavior. 67 non-
device-specific issues in our dataset were caused by such
API evolutions. For instance, Figure 4 gives an example ex-
tracted from AnkiDroid revision 7a17d3c [8], which fixed an
issue caused by API evolution. The issue occurred because
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if (android.os.Build.VERSION.SDK_INT >= 16) { 
    sqLiteDatabase.disableWriteAheadLogging(); 
}

1. + 
2. 
3. +

Figure 4: AnkiDroid pull request 130 (simplified)

the app mistakenly invoked API SQLiteDatabase.disable-
WriteAheadLogging(), which was not introduced until API
level 16. Invoking this API on devices with API level lower
than 16 could crash the app. To fix the issue, developers
put an API level check as a guarding condition to skip the
API invocation on devices with lower level APIs (Line 1).

Original Android system bugs. The other 12 non-
device-specific issues were caused by bugs introduced in spe-
cific Android platform versions. As a complicated system,
Android platform itself contains various bugs during devel-
opment. These bugs may get fixed in a new released version,
while still existing in older versions and hence leading to
FIC issues. For instance, K-9 Mail encountered a problem
caused by Android issue 62319 [6], which only affects An-
droid 4.1.2. On devices running Android 4.1.2, calling Key-

Chain.getPrivateKey() without holding a reference of the
returned key would crash K-9 Mail with a fatal signal 11 af-
ter garbage collection. A member from the Android project
explained that the issue was caused by a severe bug intro-
duced in Android 4.1.2, which was later fixed in Android
4.2, and provided a valid workaround for app developers.

Answer to RQ1: We observed five major root causes of
FIC issues in Android apps, of which the platform API
evolution and problematic hardware drive implementation
are most prominent. It is challenging to ensure app com-
patibility on various device models with diverse software
and hardware environments.

4.2 RQ2: Issue Symptom
FIC issues can cause inconsistent app behavior across de-

vices. Such behavioral inconsistency can be functional or
non-functional. We discuss some common symptoms below.

168 of the 191 FIC issues are functional and performance
issues. Their symptoms resemble those of conventional func-
tional and performance bugs. The vast majority (160) of
them are functional bugs. Performance issues account for
a minority (8) of the 191 issues found. As aforementioned
(Section 4.1), the functional issues can cause an app to crash
(e.g., AnkiDroid issue 289 in Figure 4) or not function as ex-
pected (e.g., CSipSimple issue 353 in Figure 2). The perfor-
mance issues can slow down an app. For instance, AnkiDroid
developed a simple interface specifically for slow devices in
revision 35d5275 [8]. They can also cause an app to con-
sume excessive computational resources. For example, K-9
Mail fixed an issue in revision 1afff1e [28] caused by an old
API delete() of SQLiteDatabase, which did not delete the
journal file, resulting in a waste of disk space.

The remaining 23 issues affect user experience. These is-
sues are not bugs but require code enhancements for the
diversified features of different devices. Some of these issues
lead to UI variations on devices with different screen sizes.
For example, AnySoftKeyboard added ScrollView to better
view the app on small-screen devices in revision 8b911f2 [10].
Other issues require support for device-specific customiza-
tions. For example, in revision e3a0067, AnkiDroid develop-
ers revised the app to use Amazon market instead of Google
Play store on Amazon devices [8]. These issues present a
major challenge to Android app developers [4, 53]. Earlier
studies show that UI divergence on different-sized screens is

a primary reason for bad user reviews of an app [55]. App
developers are often forced to fix these issues by enhancing
or optimizing their code to provide better user experience.

From the above discussion, we can also observe a key chal-
lenge in FIC testing. Less than 10% (15/191) of the issues
result in a crash. To effectively detect the majority of issues,
we need app-specific test oracles, which are hard to define.

Answer to RQ2: FIC issues can cause both functional
and non-functional consequences such as app crashing,
app not functioning, performance and user experience
degradation. Their symptoms can be app-specific, mak-
ing it difficult to define oracles in compatibility testing.

4.3 RQ3: Issue Fixing
To better understand how developers deal with FIC is-

sues in practice, we studied the patches applied to the 191
issues in our dataset and also analyzed discussions in the
related bug reports that we have successfully located. More
specifically, we want to understand: (1) whether the patches
exhibit common patterns, (2) how complicated the patches
are, and (3) how app developers figured out these patches.

First, developers tend to call the patches “workarounds”
rather than “fixes”, because the root causes of the issues
usually reside at the system level instead of the app level
(see Section 4.1). Developers mostly resolved the issues by
finding a way to work around the problems, making their
apps compatible with problematic devices.

Common patching patterns. Second, although FIC
issues are often caused by device-specific problems, many
patches share common patterns:
• The most common pattern (137 out of 191 patches) is to

check device information (e.g., manufacturer, SDK ver-
sion) before invoking the APIs that can cause FIC issues
on certain devices. One typical way to avoid the issues is
to skip the API invocations (see Figure 4 for an example)
or to replace them with an alternative implementation
on problematic devices. This can help fix issues caused
by problematic driver implementations, Android platform
API evolutions, and Android system bugs.
• Another common strategy (14 out of 191 issues) is to check

the availability of certain software or hardware compo-
nents on devices before invoking related APIs and meth-
ods. This is a common patching strategy for FIC issues
caused by OS customizations and peculiar hardware com-
positions on some device models.
• The remaining patches are app-specific workarounds and

strongly related to the context of the FIC issues.
Patch complexity. Third, although the concrete patch-

ing strategies vary across issues, the patches themselves are
usually simple and of small size (several lines of code). The
most common pattern of patching only requires adding a
condition, which checks device information, before the in-
vocation of issue-inducing APIs. Similarly, checking the
availability of certain software/hardware components usu-
ally only requires adding a try-catch block or a null pointer
checking statement. For the 191 issues in our dataset, more
than two-thirds of the patches are such simple ones.

Identifying valid patches. Albeit the patches are sim-
ple and of small size, this does not imply that it is easy for
developers to debug and fix FIC issues. In fact, figuring
out the root causes of the issues is a difficult task because
it requires deep investigation of the software and hardware
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environments on Android devices. However, many device
firmwares and implementation details of hardware drivers
are mostly inaccessible to developers. Without the required
information to locate the root causes, app developers derived
workarounds by trial and error. In many cases, they asked
for volunteers to help test different workarounds or sought
advice from other developers whose apps suffered from simi-
lar issues. There are also cases in which app developers could
not find a valid workaround and gave up on fixing the issues.
For example, issue 1491 of CSipSimple [19] was caused by
the buggy call log app on an HTC device. However, since
the implementation details are not accessible, CSipSimple
developers failed to figure out the root cause of the issue
and hence left the issue unfixed. Below is their comment
after multiple users reported similar issues (Issue 2436 [19]):

“HTC has closed source this contact/call log app which
makes things almost impossible to debug for me.”

Answer to RQ3: Locating the root cause of FIC issues is
difficult in practice. Whereas, issue fixes are usually sim-
ple and demonstrate common patterns: checking device
information and availability of software/hardware com-
ponents before invoking issue-inducing APIs/methods.

4.4 Implications of Our Findings
Here, we discussed how our findings in Section 4.1 to 4.3

can help developers combat FIC issues.
Compatibility testing. One critical challenge for com-

patibility testing of Android apps is the huge search space
caused by fragmentation. Due to limited time and budget,
it is impractical for developers to fully test all components
of their apps on all device models running all supported OS
versions. To address the challenge, existing work proposed
approaches to prioritize devices for compatibility testing [55,
62]. However, prioritizing devices alone is not sufficient to ef-
fectively reduce the search space. The other two dimensions
can still create a large number of combinations: OS versions
and app components. The findings and dataset of our empir-
ical study [23] further reduce the search space by providing
extra clues about devices, APIs, and OS versions, which are
more likely to cause FIC issues. Such information can guide
developers to expose FIC issues with less test effort. For
example, we discussed earlier that due to the problematic
driver implementation, the proximity sensor APIs caused
many FIC issues in popular apps. App developers can first
spend their limited resources on testing components that use
these APIs on the devices with problematic drivers.

Automated detection and repair of FIC issues. By
studying the root causes and patches of the FIC issues, we
observed that FIC issues recur (e.g., Android issue 78377 dis-
cussed in Section 4.1.1) in multiple apps and share similar
fixes. It suggests the possibility to generalize the observa-
tions made by studying the 191 FIC issues to automatically
detect and repair FIC issues in other apps. As discussed
in Section 4.3, some app developers fixed the FIC issues
in their apps by referencing the patches of similar issues in
other apps. This indicates the transferability of such knowl-
edge. To demonstrate the feasibility, we manually extracted
25 rules based on issues in our dataset and designed a static
analysis tool to check for rule violations in Android apps.
We will show by experiments that the tool can help detect
real and unreported FIC issues.

5. ISSUE MODELING AND DETECTION
With our empirical findings, we propose an automated

technique named FicFinder to detect FIC issues in Android
apps. FicFinder is based on a model that captures issue-
inducing APIs and the issue-triggering context of each pat-
tern of FIC issues. It takes an Android app’s Java bytecode
or .apk file as input, performs static analysis, and outputs its
detected compatibility issues. In the following, we first ex-
plain our modeling of compatibility issue patterns and then
elaborate on our detection algorithm.

5.1 API-Context Pair Model
To automatically detect FIC issues, we need to find a for-

malism by which the issues can be adequately modeled. By
studying the root causes and fixes of FIC issues, we observed
that many issues exhibit common patterns: they are trig-
gered by the improper use of an Android API, which we call
issue-inducing API, in a problematic software/hardware en-
vironment, which we call issue-triggering context. This ob-
servation motivates us to model each pattern of compatibil-
ity issues as a pair of issue-inducing API and issue-triggering
context, or API-Context pair in short. For APIs, we follow
their standard definition. For each issue-trigger context, we
formulate it using the following context-free grammar.

Context → Condition | Context ∧ Condition

Condition → Software env | Hardware env | API usage

As shown in the grammar, an issue-triggering context is
defined as a conjunction of the following conditions of an
issue-inducing API’s running environment: software envi-
ronment, hardware environment, or API usage. More specif-
ically, software environment may consist of information re-
lated to API level, software configurations and so on. Hard-
ware environment may contain information about device
brand, model, hardware composition and so on. API usage
describes how the concerned API is used, comprising infor-
mation about arguments, calling context and so on. Accord-
ing to this model, invoking an issue-inducing API will cause
compatibility issues if the conditions in issue-triggering con-
text are satisfied. Let us illustrate this using an example ex-
tracted from two issues that affected AnkiDroid (discussed
in pull request 128 and 130 [8]).
[

API: SQLiteDatabase.disableWriteAheadLogging(),
Context: API level < 16 ∧ Dev model != “Nook HD”

]

This simple example models the issue that invoking the
API SQLiteDatabase.disableWriteAheadLogging() on de-
vices other than “Nook HD” running Android systems with
an API level lower than 16 will lead to app crashing [8]. Such
API-context pairs can be generated from fixed compatibility
issues and used to detect unknown issues.

5.2 Compatibility Issue Detection

API-context pair extraction. 168 of our studied 191
fixed compatibility issues can be modeled as API-context
pairs to facilitate the detection of FIC issues. For designing
and implementing FicFinder, we selected 25 API-context
pairs that are most likely to recur across apps and have
the following properties: (1) they are statically checkable in
the sense that checking the issue-triggering context does not
require information that can only be acquired at runtime,
and (2) they can affect apps running on popular devices.
We included the latter requirement because some issues in
our dataset can only affect apps running on very old device
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models, which may only affect a tiny fraction of users, and
detecting them may not be very useful to developers.

FicFinder algorithm. Algorithm 1 describes FicFinder’s
analysis process. It takes two inputs: (1) an Android app
(Java bytecode or .apk file), and (2) a list of API-context
pairs. It outputs a set of detected FIC issues and provides
information to help developers debug and fix these issues.
The algorithm works as follows. For each API-context pair
acPair, it first searches for the call sites of the concerned
API (Line 2). For each call site callsite, it then performs
two checks (Line 4): (1) it checks whether the usage of API
matches the problematic usage defined in acPair if there is
a condition regarding API usage, (2) it checks whether the
configuration of the app matches the problematic configu-
ration defined in acPair if there is a condition regarding
software configuration. The checks for API usage and soft-
ware configurations are specific to the issue-triggering con-
text CTX defined in each acPair. For instance, for an API
requiring a lowest SDK version, the algorithm will check
the minimum SDK version specified in the app’s manifest
file. If it is newer than the required SDK version, invoca-
tions of this API will not be regarded as issues. If both
checks pass, the algorithm proceeds to check other soft-
ware and hardware environment related conditions defined
in acPair. These checks require analyzing the statements
that the issue-inducing API invocation statement transi-
tively depends on. For this purpose, the algorithm performs
an inter-procedural backward slicing on callsite and obtains
a slice of statements (Line 5). More specifically, the back-
ward slicing is performed based on the program dependence
graph [47] and call graph. Initially, only the API invoca-
tion statement is in the slice. The algorithm then traverses
the program dependence graph and call graph, adding state-
ments into the slice. One statement will be added if there
exists any statement in the slice that depends on it. This
process repeats until the size of the slice converges. Next,
the algorithm iterates over all statements in slice (Lines
6–9). If any statement in slice checks the software and
hardware environment related conditions defined in acPair,
the algorithm conservatively considers that the app develop-
ers have already handled the potential compatibility issues
(Lines 8–9). Otherwise, the algorithm warns developers that
their app may have a compatibility issue and outputs infor-
mation to help them debug and fix the issues (Lines 10–11).
Such information are actionable and include the call sites of
issue-inducing APIs and issue-triggering contexts.

Implementation. We implemented FicFinder on top
of the Soot analysis framework [57]. FicFinder leveraged
Soot’s program dependence graph and call graph APIs to
obtain the intra- and inter-procedural slices. Theoretically,
if the slicing results are sound (i.e., each obtained slice con-
tains all the statements that an issue-inducing API invo-
cation statement depends on), our detector will not report
false positives. However, in practice, the soundness of slic-
ing results highly hinges on the quality of the statically-
constructed call graphs and program dependence graphs. It
is well-known that statically constructing precise and sound
call graphs and program dependence graphs for Java pro-
grams (Android apps are mostly written in Java) is challeng-
ing due to the language features such as dynamic method
dispatching and reflections [48]. For this reason, FicFinder
could report false warnings when analyzing some apps. Our
evaluation results show that such false warnings are few.

Algorithm 1: Decting FIC issues in an Android app

Input : An Android app under analysis,
A list of API-context pairs acPairs

Output: Detected compatibility issues
1 foreach acPair in acPairs do
2 callsites← GetCallsites(acPair.API)

3 foreach callsite in callsites do
4 if MatchAPIUsage(callsite, acPair.CTX) and

MatchSWConfig(callsite, acPair.CTX) then
5 slice ← BackwardSlicing(callsite)
6 foreach stmt in slice do
7 issueHandled← false
8 if stmt checks acPair.CTX then
9 issueHandled← true

10 if issueHandled == false then
11 report a warning and debugging info

6. EVALUATION
In this section, we evaluate FicFinder with real-world An-

droid apps. Our evaluation aims to answer the following two
research questions:

• RQ4: (Issue detection effectiveness): Can FicFinder,
which is built with API-context pairs extracted from our
collected 191 FIC issues, help detect unknown FIC issues
in real-world Android apps?

• RQ5: (Usefulness of FicFinder): Can FicFinder pro-
vide useful information for app developers to facilitate the
FIC issue diagnosis and fixing process?

To answer the two research questions, we conducted ex-
periments on 27 actively-maintained open-source Android
apps selected from F-Droid database [22].1 Table 5 reports
the basic information of these apps, which include: (1) app
name, (2) category, (3) the revision used in our experiments,
(4) lines of code, (5) number of stars if the app is hosted on
GitHub, and (6) user rating and downloads if the app is
available on Google Play store. As we can see from the
table, these apps are diverse (covering 10 different app cat-
egories), non-trivial (containing thousands of lines of code),
and popular on market (achieved thousands to millions of
downloads). For the experiments, we applied FicFinder to
the latest version of these apps for the detection of FIC is-
sues. We considered those APIs found in the 25 API-context
pairs as issue-inducing. The experiments were conducted on
a MacBook Pro with an Intel Core i5 CPU @2.8 GHz and 8
GB RAM. We now report our experimental results.

6.1 RQ4: Issue Detection Effectiveness
To evaluate FicFinder’s performance, we applied it to the

latest version of 27 app subjects. We configured FicFinder to
report: (1) the call sites of the issue-inducing APIs that can
cause compatibility issues (warnings) and (2) the call sites
of the issue-inducing APIs where developers have already
provided workarounds to avoid potential compatibility issues
(good practices). We manually checked all the warnings
and the source code of the corresponding apps to categorize

1The 27 experimental subjects are different from the 27 subjects
used in our empirical study (Section 3.1). We did not use all our
27 empirical study subjects for experiments because some of them
are not actively maintained these days.
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Table 5: Experimental Subjects and Checking Results

ID App Name Category Latest
Revision no.

KLOC # Stars Rating # Downloads
Checking Results

Issue ID(s)
TP FP GP

1 IrssiNotifier [27] Communication ad68bc3 5.2 130 4.8 5K–10K 0 0 0 –

2 1Sheeld [1] Tools b49c98a 47.1 46 4.7 10K–50K 2 0 4 4b

3 ConnectBot [16] Communication 49712a1 23.0 602 4.6 1M–5M 0 2 1 –
4 AnkiDroid [8] Education dd654b6 58.1 533 4.5 1M–5M 0 0 11 –

5 AntennaPod [9] Media & Video 6f15660 65.0 1,142 4.5 100K–500K 2 0 0 1883b

6 Conversations [17] Communication 1a073ca 39.1 1,655 4.5 5K–10K 3 1 1 1813, 1818c

7 VLC [42] Media & Video 4588812 28.3 – 4.4 10M–50M 0 0 1
8 c:geo [14] Entertainment 5f58482 78.8 672 4.4 1M–5M 1 0 2 5695c

9 Kore [29] Media & Video 0b73228 29.5 152 4.4 1M–5M 0 0 1 –

10 AnySoftKeyboard [10] Tools d0be248 70.7 260 4.4 1M–5M 2 1 2 639b

11 Transdroid [41] Tools 28786b0 29.9 377 4.4 100K–500K 5 1 0 295a

12 K-9 Mail [28] Communication 74c6e76 86.7 2,473 4.3 5M–10M 1 0 4 1237c

13 CSipSimple [18] Communication fd1e332 59.2 130 4.3 1M–5M 0 0 5 –
14 Telegram [40] Communication a7513b3 574.9 4,721 4.2 50M–100M 1 0 10 –
15 WordPress [44] Social efda4c9 113.2 1,139 4.2 5M–10M 0 0 14 –
16 OpenVPN for Android [32] Communication 9278fa4 585.1 278 4.2 1M–5M 0 0 2 –
17 Brave Android Browser [13] Personalization 65cd91d 160.9 850 4.2 500K–1M 5 0 0 754a, 759

18 PactrackDroid [34] Communication 1090758 7.3 4 4.2 10K–50K 2 0 0 12b

19 QKSMS [37] Communication 73b3ec4 63.3 1,071 4.1 100K–500K 1 0 1 474a

20 Open GPS Tracker [31] Travel & Local 763d1e2 19.4 5 4.1 100K–500K 3 0 0 446
21 BankDroid [11] Finance f491574 34.2 240 4.1 100K–500K 0 0 0 –
22 Evercam [21] Tools c4476de 26.1 19 4.1 10K–50K 0 0 4 –
23 Bitcoin Wallet [12] Finance 3235281 18.9 558 4.0 1M–5M 0 0 0 –
24 ChatSecure[15] Communication 30f54a4 183.8 967 4.0 500K–1M 0 0 1 –
25 iNaturalist [26] Education 1e837ca 37.0 14 4.0 50K–100K 0 0 15 –
26 ownCloud [33] Productivity cfd3b94 49.1 1,467 3.7 100K–500K 0 0 0 –

27 PocketHub [35] – a6e9583 32.7 7,735 – – 18 0 0 997b

28 Total – – – – – – 46 5 79 –
“–” means not applicable. Superscript “a” means the issues were acknowledged and developers agreed to fix in future. “b” means the issues have already been fixed.

“c” means the issues do not seriously affect the app and developer chose not to fix them. Bug reports of device-specific issues are underlined.

the warnings into true positives and false positives. The
results are reported as “TP” and “FP” in Table 5. For good
practices, we also report them as “GP” in the table.

Table 5 shows that FicFinder reported 51 warnings and 46
of them are true positives (precision is 90.2%). The true pos-
itives were detected by five different API-context pairs. The
number of distinct API-context pairs is relatively small com-
pared to the number of warnings detected by them. This in-
dicates that some commonly used issue-inducing APIs were
not well handled by app developers. In some apps used in
our empirical study, new warnings were reported. It should
be noted that the warnings were detected by rules derived
from other studied subjects. For example, the warning in
AnySoftKeyboard is detected by a rule originally derived
from K-9 Mail. This provides evidence for transferability
of the knowledge of FIC issues across apps. We manually
inspected the remaining false positives and identified two
major causes. First, some implicit calling contexts in the
programs were missed by FicFinder and thus induced false
warnings. For example, the issue-inducing APIs in Connect-
Bot are transitively called by a system event handler, which
was introduced together with the APIs. In such cases, the
APIs will never be invoked on a device with an improper API
level. Without identifying the event handler’s specification,
FicFinder would report the call sites of the APIs as warn-
ings. Second, other false positives were mostly caused by
the incomplete call graphs and program dependence graphs
constructed by Soot, which led to missing dependencies in
the slices of issue-inducing APIs’ call sites.

Despite FicFinder’s high precision, it may miss real FIC
issues because it was implemented based on a small number
of API-context pairs manually extracted from our empiri-
cal study. This can be improved by automating the API-
context pair extraction process, which we plan to explore in
our future work. In addition, FicFinder adopts conservative

strategies to match issue-triggering context. Such strategies
may filter out possible call sites of issue-inducing APIs, lead-
ing to false negatives. However, they ensure the high pre-
cision of analysis results, which is important for automated
bug detection tools [56].

Besides warnings, FicFinder also found 79 good practices
in 17 out of the 27 apps analyzed, covering 16 distinct API-
context pairs. This confirms that FIC issues are common in
Android apps and developers often fix such issues to improve
the compatibility of their apps.

We further reported 45 of our detected 46 true issues to
the corresponding app developers for confirmation. There is
no public issue tracking system for Telegram, so we did not
report the issue detected in this app. In total, we submitted
14 bug reports, whose IDs are provided in Table 5. Each bug
report includes all the true warnings related to each issue-
inducing API. We also provided issue-related discussions,
API guides and possible fixes in the bug reports to help
developers diagnose the issues. Encouragingly, eight of the
14 reported issues have been acknowledged by developers.
Among the eight acknowledged issues, we observed that: (1)
five issues were quickly fixed by app developers (marked with
“b” in Table 5) and (2) the remaining three will be fixed
according to the developers’ feedback. Other than the eight
acknowledged ones, three of our 14 submitted bug reports
are still pending. The bug reports for the remaining three
issues were closed or labeled as “won’t fix” by developers as
the reported issues do not cause serious consequences to the
apps (marked with “c” in Table 5). We will further discuss
them in Section 6.2.

Answer to RQ4: The API-context pairs extracted from
existing FIC issues can help FicFinder effectively de-
tect unknown FIC issues in real-world Android apps.
FicFinder’s analysis precision is high.
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6.2 RQ5: Usefulness of FicFinder

As we mentioned earlier, besides generating warnings, our
tool can also provide information including issue related dis-
cussions, API guides, and possible fixes to help developers
diagnose and fix FIC issues. To study whether such infor-
mation is helpful, we included them in our submitted bug
reports. We learnt developers’ opinions on FIC issues by
communicating with them and made interesting findings.

First, for four of the five fixed issues, we observed that de-
velopers adopted our suggested fixes. For the other issue, the
developers adopted an alternative patch, which was seman-
tically equivalent to our suggested one. This shows that the
issue diagnosis information and fix suggestions provided by
FicFinder are useful to developers. It also indicates that the
knowledge and developers’ practice learned from our studied
FIC issues can be transferable across apps.

Second, we observed one case where the app developers
did not have the concerned device model to verify our sug-
gested fix for a device-specific issue (Brave Android Browser
Issue 754). Unlike non-device-specific issues, which can often
be validated by checking the platform’s API guides, verifying
device-specific issues and their fixes requires developers to
have access to the concerned device models running the af-
fected Android platform versions. Sometimes, this task can
be hard. For example, Brave Android Browser developers
replied to our bug report:

“ Unfortunately, I have no chance to test the fix. Could
I maybe send you an apk with the fix and you can check
it on your problem device? Or maybe you know how can
I check it (perhaps using an emulator)?”

The developers replied that they did not have the affected
device models to check our reported issue. Unfortunately,
neither did we succeed in finding the affected device mod-
els (e.g., Samsung S4 Mini with Android 4.2.2) in Amazon
Device Farm [2], which is a widely-used cloud-based plat-
form for testing apps on real phones. This suggests the need
for future work to validate detected FIC issues and associ-
ated fixes by other means such as crowdsourcing. For exam-
ple, developers may leverage our reported issue-triggering
contexts to identify the likely affected groups of users from
user reviews and use the issue-inducing APIs provided by
FicFinder to prepare test scenarios and seek these users’
further feedback and confirmation.

Third, while our bug reports facilitate developers to iden-
tify potential FIC issues in their apps, whether to fix such
issues depends on the apps’ functionality and purpose. For
three of our reported issues, developers chose not to fix them.
For instance, we reported to K-9 Mail developers that the be-
havior of AlarmManager.set() has changed since API level
16: using this API on devices with a higher API level does
not guarantee the scheduled task to be executed exactly at
the specified time. However, the developers considered that
such API behavior change would not significantly affect their
app’s main functionality (i.e., their scheduled tasks do not
necessarily need to be executed at a specific time) and did
not proceed to fix the issues, but linked our bug report to
two existing unresolved bugs. Similarly, developers of c:geo
and Conversations (Issue 1818) closed our bug reports on is-
sues of this API due to the same reason. On the other hand,
there are also apps whose functionality could be affected by
this issue. The app 1Sheeld is an example. The developers
confirmed and quickly fixed the reported issue.

Answer to RQ5: FicFinder can provide useful infor-
mation to help developers diagnose and fix FIC issues.
Future research efforts can be made on addressing the
challenges of manifesting FIC issues and verifying fixes
on affected device models.

7. DISCUSSIONS

7.1 Threats To Validity
Subject selection. The validity of our empirical study

results may be subject to the threat that we only selected
five open-source Android apps as subjects. However, these
five apps are selected from 27 candidate apps as they contain
most FIC issues. The apps are also diverse, covering four
different categories. More importantly, we observed that the
findings obtained from studying the 191 real FIC issues in
them are useful and helped locate previously-unknown FIC
issues in many other apps.

FIC issue selection. Our FIC issue selection strategy
may also pose threat to the validity of our empirical study
results. We understand that using the strategy, we could
miss some FIC issues in dataset preparation. For exam-
ple, our keywords do not contain less popular Android de-
vice brands. To reduce the threat, we made effort to find
the code revisions whose diff contains code that checks the
device information encapsulated in the android.os.Build

class. This indeed helped us find issues that happened to
many small brand devices (e.g., Wiko and Nook). On the
other hand, some existing empirical studies also selected is-
sues by keyword searching in the issue tracking system of
open-source apps [51, 61]. However, such strategies are not
very suitable for our work due to two major reasons. First,
FIC issues usually do not have specific labels and thus are
mixed with various other issues. Second, as app developers
often suggest users to provide device information when re-
porting bugs, simply searching device related keywords will
return too many results that are irrelevant to FIC issues.
With our current strategy, we already obtained 191 real FIC
issues, which are sufficient for our study.

Restricted scope of studying FIC issues induced
by Android APIs. Another potential threat is that we
only studied FIC issues related to Android APIs. While we
indeed observed cases where compatibility issues are caused
by using third-party library APIs and native libraries, we re-
stricted the scope of our current study to FIC issues related
to Android APIs. We made this choice because FIC issues
induced by Android APIs likely have a broader impact than
those arising from third-party or native libraries.

Evolving Android device market. As Android de-
vice market evolves, existing device models or OS versions
will be gradually phased out. FIC issues detected by API-
context pairs learned from existing issues may eventually get
outdated and finally disappear from the market.

Errors in manual checking. The last threat is the
errors in our manual checking of FIC issues. We under-
stand that such a process is subject to mistakes. To reduce
the threat, we followed the widely-adopted open coding ap-
proach [46] and cross-validated all results for consistency.

7.2 Automated API-Context Pair Extraction
In this paper, we manually inspected our collected FIC

issues and extracted API-context pairs for issue detection.
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This is a labor-intensive process. In reality, it is impracti-
cal to manually identify and extract such pairs from a large
number of real FIC issues. It would be interesting to au-
tomate the process and learn these API-context pairs from
highly popular Android apps, which likely have addressed
common FIC issues. As discussed earlier, the most common
pattern of fixing FIC issues is to check device information
before invoking certain APIs. Therefore, it is possible to
extract API-context pairs by correlating Android APIs with
the code that checks device information. The correlation
can be established via static or dynamic code analysis. We
will explore this possibility in our future work.

8. RELATED WORK
Android fragmentation has been a major challenge for An-

droid app developers [45, 53]. Recent studies have explored
the problem from several aspects. In this section, we discuss
some representative ones.

Understanding Android fragmentation. Several stud-
ies have been performed to understand problems of Android
fragmentation. Han et al. were among the first who explored
the Android fragmentation problem [51]. They studied the
bug reports related to HTC and Motorola in Android issue
tracking system [6] and pointed out that Android ecosystem
was fragmented. Researchers have reported various findings
related to Android fragmentation. For example, Li et al.
pointed out that app usage patterns are sensitive to device
models [58]. Pathak et al. reported that frequent OS up-
dates represent the largest fraction of user complaints about
energy bugs [65]. Liu et al. observed that a notable pro-
portion of Android performance bugs occur only on specific
devices and platforms [61]. Wu et al. studied the effects of
vendor customizations on security by analyzing Android im-
ages from popular vendors [68]. Later, Zhou et al. proposed
an approach to detecting security flaws caused by Android
device driver customizations [70]. These studies documented
various functional and non-functional issues caused by An-
droid fragmentation, but did not aim to understand the root
causes of such issues, which are different from our study.

In addition, the HCI community also found that differ-
ent resolutions of device displays have brought unique chal-
lenges in Android app design and implementation [64, 69].
Holzinger et al. reported their experience on building a busi-
ness application for different devices considering divergent
display sizes and resolutions [52]. In our dataset, we also
found that these issues were part of FIC issues on Android
platforms and they can seriously affect user experience.

App testing for fragmented ecosystem.Android frag-
mentation brought new challenges to app testing. To ad-
dress the challenges, Kaasila et al. designed an online system
to test Android apps across devices in parallel [54]. Halpern
et al. built a record-and-replay tool to test Android apps
across device models [49]. While these papers proposed gen-
eral frameworks to test Android apps across devices, they
did not address the problem of huge search space for FIC
issue testing (Section 4.4).

Several recent studies aimed to reduce the search space in
Android app testing by prioritizing devices. For example,
Vilkomir et al. proposed a device selection strategy based
on combinatorial features of different devices [67]. Khalid
et al. conducted a case study on Android games to priori-
tize device models to test by mining user reviews on Google
Play store [55]. The most recent work by Lu et al. proposed

an automatic approach to prioritizing devices by analyzing
user data [62]. It is true that by prioritizing devices, testing
resources can be focused on those devices with larger user
impact. However, these studies alone are not sufficient to
significantly reduce the search space when testing FIC is-
sues. The reason is that the combinations of different plat-
form versions and issue-inducing APIs are still too many to
be fully explored. In our work, we addressed the challenge
from a different angle by studying real-world FIC issues to
gain insights at source code level (e.g., root causes and fix-
ing patterns). By this study, we observed common issue-
inducing APIs and the corresponding software and hardware
environments that would trigger FIC issues. Such findings
can further help reduce the search space during app testing
and facilitate automated issue detection and repair.

Android API evolution. Constantly evolving Android
platforms cause Android fragmentation. Existing work re-
ported that the chosen SDK version and the quality of the
used Android APIs are major factors that affect app user
experience [66]. McDonnell et al. investigated how chang-
ing Android APIs affect API adoption in Android apps [63].
Linares-Vásquez et al. studied the impact of evolving An-
droid APIs on user ratings and StackOverflow discussions [59,
60]. They have observed that apps using change-prone and
fault-prone APIs tend to receive lower user ratings and chan-
ges of Android API have motivated app developers to open
discussion threads on StackOverflow. These studies focused
on understanding the influence of using fast-evolving An-
droid APIs on the development procedure and app qual-
ities, but did not study the concrete symptoms or fixes of
FIC issues induced by such API changes. Our work not only
covered FIC issues with various root causes but also studied
concrete FIC issues so that we can provide new insights and
facilitate FIC issue detection and repair.

9. CONCLUSION AND FUTURE WORK
In this paper, we conducted an empirical study to un-

derstand and characterize FIC issues in Android apps at
the source code level. We investigated 191 real FIC issues
collected from five popular open-source Android apps to un-
derstand their root causes, symptoms, and fixing strategies.
From the empirical study, we obtained several important
findings that can facilitate the diagnosis and fixing of FIC
issues, and guide future studies on related topics. Based
on our findings, we proposed to use API-context pairs that
capture issue-inducing APIs and issue-triggering contexts to
model FIC issues. With this model, we further designed
and implemented a static analysis technique FicFinder to
automatically detect FIC issues in Android apps. Our eval-
uation of FicFinder on 27 large-scale subjects showed that
FicFinder can detect many unknown FIC issues in the apps
and provide useful information to developers.

In future, we plan to explore the possibility of leverag-
ing crowdsourcing to help developers verify certain device-
specific FIC issues and validate possible fixes. We also plan
to enhance the detection capability of our technique by min-
ing new FIC issues in popular apps using the proposed API-
context framework.
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