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ABSTRACT
Self-adaptive applications address environmental dynamics system-
atically. They can be faulty and exhibit runtime errors when en-
vironmental dynamics are not considered adequately. It becomes
more severe when uncertainty exists in their sensing and adaptation
to environments. Existing work verifies self-adaptive applications,
but does not explicitly consider environmental constraints or uncer-
tainty. This gives rise to inaccurate verification results. In this pa-
per, we address this problem by proposing a novel approach to ver-
ifying self-adaptive applications suffering uncertainty in their envi-
ronmental interactions. It builds Interactive State Machine (ISM)
models for such applications and verifies them with explicit con-
sideration of environmental constraints and uncertainty. It then re-
fines verification results by prioritizing counterexamples according
to their probabilities. We experimentally evaluated our approach
with real-life self-adaptive applications, and the experimental re-
sults confirmed its effectiveness. Our approach reported 200-660%
more counterexamples than not considering uncertainty, and elim-
inated all false counterexamples caused by ignoring environmental
constraints.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification; D.
2.5 [Software Engineering]: Testing and Debugging

General Terms
Verification, Reliability, Experimentation

Keywords
Self-adaptive application; verification; uncertainty

1. INTRODUCTION
Self-adaptive applications are gaining increasing popularity, e.g.,

Locale [1], Phone-Adapter [28, 29] and Navia [2]. These appli-
cations continually sense their environments and make adaptation
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according to their predefined logics [23, 28]. This forms a reaction
loop [6], and an application’s adaptation upon certain environmen-
tal changes can then affect environmental sensing afterwards. Thus
self-adaptive applications and their environments are together cre-
ating complex and correlated interactions. This causes challenges
to building dependable self-adaptive applications, since develop-
ers have to consider every detail of such interactions in a predic-
tive way. Real-world self-adaptive applications are thus error-prone
[20, 28, 32, 34].

To assure the quality of self-adaptive applications, many research
efforts focus on sophisticated testing or debugging techniques. Some
techniques [8, 24, 34] use fault patterns to dynamically detect and
analyze faults in these applications. Others work on test case gen-
eration [30, 32] or test adequacy criteria [22] to support effective
fault detection. However, one outstanding challenge in fault de-
tection for self-adaptive applications is that these applications keep
interacting with dynamic environments. It is generally infeasible
to predict and enumerate all possible environmental conditions that
an application can encounter at runtime [23, 27]. This makes exist-
ing techniques unable to test self-adaptive applications adequately
and precisely. For example, Ramirez et al. [27] used simulation
to explore environmental conditions that may cause requirement or
behavior violation to an application, but only limited simulation
environments can be tested due to its complexity and cost.

On the other hand, formal methods such as model checking and
theorem proving rigorously verify an application’s behavior [33].
Given an application, these techniques exhaustively explore its state
space to detect potential errors (e.g., dead state or abnormal be-
havior). Recent studies have also reported promising results in
applying these techniques to verifying properties of self-adaptive
applications, e.g., safety [13, 40], reliability [7, 17], liveness and
reachability [21, 28, 29, 40], consistency [21] and stability [4, 28,
29]. However, when it comes to verifying self-adaptive applica-
tions under real-world environments, these pieces of existing work
have two major limitations:

Lack of modeling environmental constraints. First, an appli-
cation’s running environment can be subject to implicit constraints
enforced by this environment’s physical laws or assumed by the
application’s prior knowledge. Consider an example robot-car ap-
plication [38, 39] that aims to explore an unknown area without
bumping into any obstacle. The car can sense its four-directional
distances (front, back, left and right) to nearby obstacles using its
built-in ultrasonic sensors. Based on these sensed distances, it de-
cides its next movement to avoid obstacles. Suppose that the car
keeps walking forward with an obstacle detected ahead. Its sensed
distance to this obstacle would keep decreasing. One can derive
a constraint for this situation: the last sensed distance should be
equal to the summation of the new sensed distance and how far the
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car has walked since its last sensing. Such constraints relate en-
vironmental sensing (e.g., distance sensing) to application adapta-
tion (e.g., car walking). We name them environmental constraints.
Overlooking them can lead to inaccurate verification results. For
example, Sama et al. [28, 29] used model checking to detect faults
for self-adaptive applications. The work does not model or use
environmental constraints in verification, and thus many reported
faults are false positives [21].

Lack of modeling uncertainty. Second, an application’s en-
vironmental sensing and adaptation can be affected by uncertainty,
which is inevitably caused by unreliable environmental sensing and
flawed physical actions [26]. For environmental sensing, an ap-
plication may only be able to obtain an estimate of its environ-
mental conditions, but never know its real state. For example,
the car’s distance sensing always contains unpredictable noise, and
sensed values may not faithfully reflect real distances from the car
to its nearby obstacles. Similarly, for adaptation an application can
only interact with its environment as designed, but may not know
whether the interaction indeed proceeds as expected. For example,
the car can make 90◦- left or -right turns but with unpredictable er-
ror. In practice, a left turn can actually be 85◦ and the car may not
be able to know this error. Such sensing and adaptation uncertainty
can cause inconsistency between an application’s understanding to
its environment and its actual environmental conditions, thus af-
fecting the application’s functionalities [27]. Similar to environ-
mental constraints, overlooking such uncertainty can also lead to
inaccurate verification results. However, to the best of our knowl-
edge, none of existing work [4, 7, 17, 21, 28, 29, 40] has explicitly
modeled and considered such uncertainty in verifying self-adaptive
applications.

In this paper, we address these two limitations by proposing a
novel approach to verifying self-adaptive applications under uncer-
tain environmental dynamics. Our approach works in three phases:

Phase 1: Modeling adaptation logic and environmental con-
straints. We model the reaction loop of a self-adaptive application
with Interactive State Machine (ISM), and explicitly specify envi-
ronmental constraints for the application.

Phase 2: Verifying the model with uncertainty considered.
We consider the uncertainty in this application’s sensing and adap-
tation to its environment by specifying the error range and distribu-
tion of each related variable. We then verify the application through
its ISM model taking all error ranges into account.

Phase 3: Prioritizing counterexamples. From the verification,
we obtain counterexamples that lead to the application’s potential
runtime errors . We refine verification results by ranking generated
counterexamples according to their occurrence probabilities.

We show that by modeling and exploiting such environmental
constraints and uncertainty, verifying self-adaptive applications can
receive results with greatly increased accuracy. Our approach re-
ported 200-660% more counterexamples than not considering un-
certainty, and eliminated all false counterexamples caused by ig-
noring environmental constraints. The experimental results consis-
tently showed that our verification approach is more accurate and
achieves good performance as well as scalability.

We summarize our contributions in this paper below:

• We propose a novel ISM model to explicitly consider envi-
ronmental constraints and uncertainty in verifying self-adapti-
ve applications. This greatly increases verification accuracy.

• We propose a prioritization technique to rank counterexam-
ples generated from verification according to their occurrence
probabilities. This enables developers to focus on most likely
faults.

• We evaluate our verification approach with self-adaptive ap-
plications by both real and simulation experiments, and vali-
date its usefulness in practice.

The remainder of this paper is organized as follows. Section 2 in-
troduces our modeling of self-adaptive applications. Section 3 uses
a motivating example to explain the inadequacy of existing work
and motivate our work. Section 4 presents our verification approach
in detail. Section 5 validates our approach with self-adaptive appli-
cations. Section 6 discusses related work, and finally Section 7
concludes this paper.

2. MODELING SELF-ADAPTIVE
APPLICATIONS

As mentioned earlier, self-adaptive applications continually sense
their environments and make adaptation upon perceived environ-
mental changes. Their functionalities are realized by the collab-
oration of three parts: environmental sensing, decision making,
and application adaptation. Thus, a self-adaptive application’s run-
ning can be described by a reaction loop, as illustrated in Figure 1.
First, the application senses its environment to capture interesting
environmental changes. Then, according to its predefined logics,
the application makes a decision by selecting appropriate adapta-
tion to such environmental changes. The adaptation can change
the environment and affect the application’s environmental sens-
ing afterwards. Thus the environmental sensing is related to the
adaptation by environmental constraints as explained earlier. As
Figure 1 shows, the sensing and adaptation can also be affected
by uncertainty, which is caused by imperfect sensing technologies
and flawed physical actions nowadays. Since existing modeling ap-
proaches for self-adaptive applications such as A-FSM [28, 29] do
not explicitly consider how an application’s adaptation affects its
environmental sensing afterwards, we propose a new model, named
Interactive State Machine (ISM) to meet this requirement.

Given a self-adaptive application, we define its ISM as a tuple
M := (S,V,R,s0), in which symbols are explained below:

• S is a set of this application’s all states, and s0 ∈ S is its initial
state, with which the application starts.

• V is a set containing this application’s all variables. V =
Vs ∪Vn, in which Vs and Vn represent two disjointed cate-
gories. Vs contains all sensing variables, which store values
of environmental attributes interesting to this application (up-
dated by relevant sensing devices). Vn contains other normal
variables, i.e., non-sensing variables.

• R is a set containing this application’s all adaptation rules
(or rules for short). For each rule r ∈ R, r is associated with
a state s ∈ S, which is r’s source state. Rule r takes a form
of r := (condition,actions). condition is a logical formula
built on V , and its satisfaction would trigger the execution
of this rule. actions specifies what should be done when ex-
ecuting this rule. actions can include internal actions and
interactive actions. The former takes internal adaptation by
updating values of non-sensing variables, e.g., updating the
application’s current state, and in this case the application
transits to a new state. The latter takes interactive adaptation
by interacting with the application’s environment directly,
e.g., making a robot-car move forward. interactive actions
can also specify the extents of their effects on the environ-
ment by updating certain non-sensing variables, e.g., record-
ing the distance that the car has moved forward. interactive
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actions would also update values of sensing variables implic-
itly through environment constraints (the updates are explic-
itly performed upon next environmental sensing).

ISM is executable. Starting from its initial state s0, an ISM
M := (S,V,R,s0) repeatedly reads values of its sensing variables
(automatically updated by environmental sensing), then evaluates
and decides which rule to execute, and finally conducts the exe-
cuted rule’s associated actions. When a state s ∈ S is set as M’s cur-
rent state, rules having this state as source state are enabled, while
other rules are disabled. Only enabled rules participate in rule eval-
uation upon each environmental sensing. When an enabled rule r’s
condition r.condition is satisfied, the rule is triggered for execu-
tion. If multiple rules are triggered, only one of them is selected
to execute. This tie can be resolved by some priority or random
mechanisms [28, 35, 36], which are not our focus in this paper and
therefore omitted. When a rule r is selected to execute, its actions
r.actions are conducted in a sequential way. Conducting actions
concurrently might be possible for certain scenarios, but this also
is not our focus in this paper and therefore omitted. Thus, an ISM
M’s execution can be conceptually modeled by a path which is a
sequence of states and rules: σ = s0 r1 s1 . . .rn sn. Similar to tradi-
tional programming, we define path condition of execution σ as:

pc(σ) =
n∧

i=1
ri.condition

To be representative, we adopt a quantifier-free first-order logic
based language for specifying a rule’s condition. With this lan-
guage, a rule’s condition can be specified by a logical formula that
is recursively constructed using the following syntax:

f := ( f ) and ( f ) |( f ) or ( f ) | ( f ) implies ( f ) | not ( f ) |
bfunc(v, . . . , v).

Note that the above “and”, “or”, “implies” and “not” logical con-
nectives follow their traditional interpretations, i.e., representing
conjunction, disjunction, implication and negation operations, re-
spectively. Terminal bfunc refers to any user-defined or domain-
specific function that returns either true or false. When a bfunc is
easy to understand, one may also use its corresponding operator
to simplify its representation, e.g., “largerT han(v,50)” can also be
represented by “v > 50”.

3. MOTIVATING EXAMPLE
In this section, we present a motivating example using our afore-

mentioned self-adaptive robot-car application. The application con-
trols a robot-car to explore an unknown area and avoid bumping
into any obstacle. If the car bumps into an obstacle, we say that
the application fails. We first use our ISM model to specify this
application’s adaptation logics. We illustrate it partially in Figure 2
due to page limit, but this suffices for explaining our problem.

The ISM model for this application is: M := (S,V,R,s0), where
S := {A,B, . . . ,E, . . .}, R := {r0,r1, . . . ,r14, . . .}, V is the set of
variables used in this application (in particular, by R), and the ap-
plication’s initial state s0:= A. We in the following take state A and
its associated rules for example, and other states and rules can be
explained similarly.

There are four rules associated with State A, i.e., having A as
their source states: r0, r1, r2 and r3 (multiple actions are sequen-
tially separated by semicolon “;”):

r0 := ("disF ≥ 20", "walkF").
r1 := ("(disF < 20) and (disL ≥ 20)", "turnL; walkF;

Environment

Unreliable

Flawed

Environmental

constraints

Decision

making

Adaptation

Sensing

Self-adaptive app

Figure 1: Reaction loop between a self-adaptive application
and its environment.

turnL; updateState(B)").
r2 := ("(disF < 20) and ((disL < 20) and (disR ≥ 20))",

"turnR; walkF; turnR; updateState(D)").
r3 := ("(disF < 20) and ((disL < 20) and (disR < 20))",

"walkB; updateState(E)").

These rules reference four variables: disF , disB, disL and disR.
They are all sensing variables, representing sensed distances be-
tween the car and its four-directional obstacles (front, back, left
and right), respectively. If a sensed distance is no less than 20 cm,
we consider this distance safe. These rules also involve some ac-
tions. For example, actions walkF and walkB mean driving the car
to walk forward and backward by a unit distance (say, 10cm), re-
spectively. Actions turnL and turnR represent turning the car left
and right by 90◦, respectively. At State A, the car keeps walking
forward if its sensed distance ahead is safe (Rule r0). If this dis-
tance is no longer safe but the car’s left distance is still safe, the car
would turn left, walk forward for a unit distance, and then turn left
again (Rule r1). After these interactive actions, the application also
conducts a state-transition internal action, updateState(B), which
transits the application to a new state (B). At State B, new rules
associated with this state( r4, r8, r9) are enabled while the previous
rules (r0, r1, r2,r3) are all disabled. Rule r2 works similarly as Rule
r1 except that it turns the car to right and transits the application
to State D. If the car’s sensed distances at three directions (front,
left and right) are all not safe, the application would drive the car to
walk backward for a unit distance and then transit to State E (Rule
r3).

Consider our earlier failure definition. The car should not bump
into any obstacle. Since the car can walk only forward or back-
ward, if its last action is walkF, the failure condition is "disF ≤ 0",
or otherwise (i.e., walkB) the failure condition is "disB ≤ 0" (the
failure condition would be different with uncertainty and environ-
ment constraints, which will be discussed later).

Now we verify this ISM model to check whether it contains any
problem. We note that if one does not model and consider envi-
ronmental constraints and uncertainty, the verification results can
be inaccurate. For example, consider an execution: A r0 A r1 B.
Its path condition is "disF0 ≥ 20 and disF1 < 20 and disL1 ≥ 20"
(since removing parentheses from a conjunction formula does not
change its value, all parentheses are omitted for simplicity). Here,
different subscripts represent sensed values at different time points.
Suppose that after executing action walkF in Rule r0, the car bumps
into an obstacle, i.e., the failure condition “disF ≤ 0” is satisfied.
Without considering uncertainty caused by unreliable sensing, disF
would equal to disF1, which is the sensed value of disF after ex-
ecuting action walkF in Rule r0. We concatenate this failure con-
dition to the earlier path condition and try to solve the whole con-
straint. If we can successfully solve this constraint, we would ob-
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walkB"; "updateState(E)"
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"turnL; walkF; turnL;

updateState(B)"

"(disF < 20) and ((disL < 20)

and (disR >= 20))", "turnR;

walkF; turnR; updateState(D)"

r8

Figure 2: A partial ISM model for our example self-adaptive
robot-car application (ellipses represent states and arcs repre-
sent rules).

tain a concrete answer on why this execution fails. This execution
with the answer is also known as a counterexample.

Regarding the above constraint "disF0 ≥ 20 and disF1 < 20 and

disL1 ≥ 20 and disF1 ≤ 0", one possible counterexample for solv-
ing this constraint is: disF0 = 100 , disF1 = 0 and disL1 = 30.
This counterexample seems feasible but it violates an environmen-
tal constraint connecting disF0 and disF1, which is established by
action walkF in Rule r0. We observe that the distance between
disF0 and disF1 is too large (0−100 =−100 cm) such that it can-
not be accomplished by walkF (10cm). This makes the counterex-
ample unreal and thus useless (i.e., a false positive).

On the other hand, real counterexamples (i.e., true positives) may
also be missed if one does not consider uncertainty in verifying
this application. For instance, consider the same execution in the
above example: A r0 A r1 B. By using the approach of model-
ing environmental constraints, which will be introduced later, we
can have a constraint: disF1 = disF0 −unit, since disF0’s value be-
comes disF1’s value due to the effect of action walkF, which moves
the car forward by a unit distance. Suppose that one wants to know
whether after executing action walkF in the first r0, the applica-
tion can fail, i.e., "disF1 ≤ 0"is satisfied. Concatenating the path
condition and the failure condition together and trying to solve the
whole constraint would return no result, since unit = 10 and thus
disF1, which equals to disF0 −unit, must be larger than 0 based on
the fact "disF0 ≥ 20". However, both environmental sensing and
application adaptation can contain uncertainty as explained earlier.
Suppose that disF’s value is subject to an error range of [-6, 6]
and the car’s walked unit distance falls in an error range of [-5, 5].
Then there still exists possibility that the car bumps into an obstacle
in this situation. Therefore, this calls for new effort to model such
uncertainty to enhance our constraints so that one can discover such
potential problems in a self-adaptive application in a more accurate
way.

4. VERIFYING SELF-ADAPTIVE
APPLICATIONS

In this section we present our approach to verifying self-adaptive
applications with environmental constraints and uncertainty. We
begin with an overview of the approach, followed by detailed ex-
planations.

4.1 Approach Overview
Given a self-adaptive application, we build its ISM model. As

discussed in the motivating example, the failure condition of our

Algorithm 1 Verification algorithm.
Input:

ISM M := (S,R,V,s0), failure condition f c, and bound k.
Output:

Set C of counterexamples with probabilities.
1: C := /0
2: path :=< s0 >; i := 0;
3: repeat
4: s := the last state of path;
5: if i < k && s has unexplored rules then
6: r := an unexplored rule of s;
7: s′ := the state that r leads to;
8: append r and s′ to path; i := i+1;
9: extract the path’s path condition pc;

10: augment pc with environmental constraints;
11: modify pc by introducing uncertainty;
12: check pc && f c with a constraint solver;
13: if pc && f c is satisfied then
14: estimate the probability of the counterexample;
15: add the counterexample with probability to C;
16: end if
17: else
18: remove s′ and r from path;
19: i := i−1;
20: end if
21: until path == /0;
22: return C;

robot-car application is that the car bumps into any obstacle. This
is verified by checking each path in the ISM to see whether the
concatenation of its path condition and the failure condition can be
satisfied. If so, a counterexample is found, which corresponds to
an application failure.

The overview of our verification approach is shown in Algorithm
4.1. The algorithm takes an ISM M, a failure condition f c, and a
bound k as its inputs. The main data structure used in the algo-
rithm is a list path, which records the path that is currently being
explored. The algorithm traverses the ISM in a depth-first manner
to find new paths (Lines 5-8, Lines 18-19). Since the number of op-
tional paths could be infinitely many, for practical considerations,
our approach bounds the length of a path being explored with a con-
figurable integer during the traversal (Line 5: i < k). Our approach
also supports setting a time budget to prevent endless traversal. The
traversal ends when there is no unexplored path within the bound
(Line 21).

For each selected path, the algorithm extracts its path condition
pc. The ISM explicitly specifies the adaptation logics of an ap-
plication, but does not include its environmental constraints and
uncertainty. So we augment the path condition with environmental
constraints and uncertainty for realistic verification. Then the path
condition is passed to Z3 [12], an efficient SMT solver, to check
whether it can be satisfied. If so, a counterexample is found. It is
possible that many counterexamples can be reported. To make the
verification results more actionable to users, our approach priori-
tizes the reported counterexamples according to their occurrence
probabilities. In the following three subsections, we present our
ideas of modeling environmental constraints, dealing with uncer-
tainty, and prioritizing counterexamples in detail.

4.2 Modeling Environmental Constraints
A self-adaptive application’s execution can be described by a re-

action loop. Each environmental sensing provides information for
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Before action walkF

After action turnL

After action walkF

Figure 3: Environmental constraints for actions.

the application to select an appropriate adaptation, which can fur-
ther change the environment and affect the application’s next envi-
ronmental sensing. Since the new environment is the result of the
adaptation’s effects on the previous environment, it cannot be arbi-
trary. This is because inherent constraints in the environment, such
as physical laws or the constraints predefined by the application
domain, could be violated. For example, for the robot-car applica-
tion, suppose that the car keeps walking forward with an obstacle
detected ahead. If each sensed environment of the application is
treated independently and can be arbitrary, we can have that the ap-
plication’s sensed distance to its front obstacle in one environmen-
tal sensing is larger than that in the previous sensing. This clearly
contradicts physical laws and makes thus reported counterexample
useless.

The constraints related each environmental sensing to its previ-
ous sensing and adaptation are named environmental constraints, as
explained before. For a self-adaptive application, we build its ISM
M := (S,V,R,s0). Suppose a rule r ∈ R has been just triggered, and
interactive actions of r.actions has affected the environment. Then
an environmental constraint is a formula conenv(V,V ′,E), where V
and V ′ are the set of sensing variables before and after the interac-
tive actions, respectively, and E is a set of non-sensing variables
representing the effects of interactive actions. The semantics of
conenv can be derived from inherent constraints of the environment.
Take the robot-car application as an example again. Suppose that
the car takes action walkF, which makes the car walk forward for a
distance unit. Then from physical laws we can derive an environ-
mental constraint conenv({disFi},{disFi+1},{unit}) meaning that
the last sensed distance disFi should be equal to the summation of
the new sensed distance disFi+1 and the distance unit that the car
has walked since its last sensing, i.e., conenv({disFi},{disFi+1},
{unit}):disFi = disFi+1+unit. The environmental constraint conenv
(V,V ′,E) requires that when values of the sensing variables in V ′

are explicitly updated upon an environmental sensing, these up-
dated values should satisfy conenv(V,V ′,E). Thus, through envi-
ronmental constraints, we provide a means to enable interactive
actions to update sensing variables implicitly. For conenv({disFi},
{disFi+1},{unit}) in the above example, it requires that the update
of disFi+1 should satisfy disFi+1 = disFi − unit, as illustrated in
Figure 3 (top). However, for action walkF, there are no constraints
about disLi+1 and disLi, or disRi+1 and disRi. This is because af-
ter the robot-car walks forward for a distance unit, the distances
between the car and its left and right obstacles can be arbitrary and
thus no environmental constraints are specified.

Figure 3 also shows another example in the bottom about action
turnL, which is a turning-left action. Similar environmental con-
straints exist for actions walkB and turnR, which are the walking-
backward and turning-right action, respectively. They are omitted
due to page limit.

Now we can augment the path condition of a selected path with
such environmental constraints, as mentioned in the overview. For
each rule in the path, if there are environmental constraints for tak-
ing the rule’s interactive actions, we concatenate the environmen-
tal constraints to the path condition. After it is done, we get a new
formula of constraints for the path, which is called the ideal con-
dition. For example, for path σ = A r0 A in the robot-car example,
its path condition is "disF0 ≥ 20". For Rule r0, it has an interac-
tive action walkF. Let disF1 be the distance between the car and
its front obstacle after taking the action walkF. Then as mentioned
before, there is an environmental constraint "disF1 = disF0−unit".
After concatenating the environmental constraint to the path condi-
tion, we get the ideal condition of path σ , which is "disF0 ≥ 20 and
disF1 = disF0 − unit". For each of the selected paths, we process
the path condition in the same manner to get the ideal condition,
which will be further processed to include uncertainty, as described
in the next subsection.

4.3 Dealing with Uncertainty
Self-adaptive applications’ environmental sensing and adapta-

tion can be affected by uncertainty, which is naturally caused by
unreliable sensing and flawed adaptation [26]. The uncertainty can
cause inconsistent understandings for an application between its
sensed environment and actual environment [38]. As suggested by
the motivating example, the application may fall into failure due
to its inaccurate understanding to the environment caused by un-
certainty. Thus, we should consider uncertainty in verifying self-
adaptive applications. Otherwise, the accuracy of verification re-
sults cannot be guaranteed.

However, it is difficult to specify uncertainty precisely in the
modeling and verification process, because uncertainty comes from
various sources and appears in different forms. We studied uncer-
tainty in many real cases and observed that uncertainty caused by
unreliable sensing or flawed adaptation demonstrates regular pat-
terns. The sensed value of unreliable sensing or the effects of
flawed adaptation often fall into an error range, with a distribution
determined by the physical characteristics of sensing technologies
and actions. In this section, we explain how to model this kind of
uncertainty in the verification of self-adaptive applications.

Uncertainty affects self-adaptive applications’ sensing and adap-
tation, and thus affects values of sensing variables and non-sensing
variables that represent the effects of adaptation. Given an ISM,
to model uncertainty, we first need to identify the variables in an
ideal condition that would be affected by uncertainty. Then for
each of these variables, we give an error range and a distribution for
its potential value, i.e., for a variable v affected by uncertainty, let
[a,b] (a < b) be the error range of v. Then the lower bound and up-
per bound of variable v are v+a and v+b respectively. Meanwhile,
we set a distribution p of the variable’s value between its lower and
upper bounds. The lower bound, upper bound and the distribution
of a variable can be obtained from field studies or experiments with
statistical analysis. In the robot-car application, the distance disF
between the car and its front obstacle is affected by uncertainty. We
found that the ultrasonic sensor used in the robot-car has an error in
sensing. Field studies show that its error range is [-6, 6] cm and its
error distribution is a Gaussian one. So, for variable disF , we give
an error range of [−6,6]. Then the lower bound and upper bound
are disF −6 and disF +6, respectively. The distribution of disF’s
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value between its lower and upper bounds is a Gaussian distribu-
tion. Similarly, from field studies we learned that the distance unit
of the car’s walking action falls into an error range [-5, 5] cm, and
the distribution of its value is also a Gaussian distribution.

Now we can show how to augment an ideal condition with uncer-
tainty. In an ideal condition, for all its variables, there is no uncer-
tainty considered. Therefore, for each variable v, which is affected
by uncertainty in the ideal condition, since v does not include un-
certainty, we use a new variable v′ to represent v with uncertainty.
v′ satisfies the constraint v+a ≤ v′ ≤ v+b, where [a,b] is the error
range of v. This means that the value of v′ can range from v+a to
v+b. Clearly, for environmental sensing, the value of v′ is a sensed
value of the application, and the value of v is the actual value about
the environment. For adaptation, the value of v′ records its actual
effects on the environment, and the value of v records its ideal ef-
fects assumed by the application. We also set a distribution P(v′)
for v′ that will be used to prioritize later reported counterexamples,
which is explained in the next subsection. Then we replace v with
v′ in the ideal condition, and join the constraint v+ a ≤ v′ ≤ v+ b
with the ideal condition. This forms a new condition named the
actual condition.

Take path σ = A r0 A in the robot-car application mentioned ear-
lier for illustration. The ideal condition of the path is "disF0 ≥ 20
and disF1 = disF0−unit", in which variables disF0, disF1, and unit
are affected by uncertainty. The error ranges for disF0 and disF1
are [-6, 6], and the error range of unit is [-5, 5]. We use new vari-
ables disF ′

0, disF ′
1 and unit ′ to replace the counterparts in the ideal

condition, respectively. The constraint between disF0 and disF ′
0 is

"disF0 − 6 ≤ disF ′
0 ≤ disF0 + 6". Other variables’ constraints be-

tween themselves and the new variables are similar. Then we com-
bine all these new constraints into the ideal condition, and get the
actual condition of σ , i.e., "disF ′

0 ≥ 20 and disF ′
1 = disF ′

0 − unit ′

and disF0−6≤ disF ′
0 ≤ disF0+6 and disF1−6≤ disF ′

1 ≤ disF1+
6 and unit −5 ≤ unit ′ ≤ unit +5".

4.4 Prioritizing Counterexamples
To check whether an execution can lead to application failure,

we concatenate a failure condition to the actual path condition as-
sociated with this execution to get a new constraint, which is then
passed to Z3 to check whether there is a satisfying solution. If yes,
the execution can fall into failure. In the solution, for each vari-
able, Z3 will provide it with a value. The values of all sensing vari-
ables represent an application’s understanding to the environment.
Based on these values, we can construct a partial environment in
which the application fails. The reason why the environment may
be partial is that the application may not sense all environmental
attributes. A path σ contains a sequence of actions that the ap-
plication takes, which would lead to the application’s failure if a
solution exists. The path σ and the solution together indicate an
application failure, and that is why we name them a counterexam-
ple. A counterexample is a tuple t = (σ ,L), where L is a mapping
L : V → A, where V is a set {v0,v1, . . . ,vn} containing all variables
in the actual condition of σ and A is a set of values {a0,a1, . . . ,an}
where L(vi) = ai (0≤ i≤ n) in the solution. A counterexample rep-
resents a failed application execution in a certain environment. For
example, for the robot-car application, we already know the actual
condition of path σ = A r0 A (cf. the previous subsection). The
failure condition of this path σ is disF1 ≤ 0. Then by solving the
concatenation of the actual condition and the failure condition, we
can obtain a solution of “disF0 = 14,disF ′

0 = 20,disF1 = 0,disF ′
1 =

6,unit = 10,unit ′ = 14”. This solution corresponds to the following
failure scenario. The distance between the robot-car and its front
obstacle is initially 14 (disF0), but due to uncertainty, the applica-

tion’s sensed distance is 20 (disF ′
0). Based on the sensed distance,

the application makes the car walk forward for a unit distance that is
assumed to be 10cm (unit). However, the actually walked distance
is 14cm (unit ′). As a result, although the new sensed distance of the
application is 6cm (disF ′

1), in reality the car has already bumped
into the obstacle (disF1 = 0). This counterexample would not have
been reported, if we do not consider uncertainty in environmental
sensing and application adaptation.

Self-adaptive applications are more likely to fall into failures in
an environment with uncertainty [14, 26, 27]. As a result, many
counterexamples could be reported by solving concatenation of ac-
tual conditions and failure conditions. However, for a certain coun-
terexample t = (σ ,L), an application may not fail by exactly fol-
lowing the actions specified in σ under the environment constructed
from the values of variables in L. This is because each time the
application runs, due to uncertainty, the application’s sensed envi-
ronment can be different from its actual environment, and its adap-
tation’s effects can be different from its assumption. The likelihood
for application making the same actions as the ones in σ that lead
to failure in the environment corresponding to the variables’ values
in L is called the probability of counterexample t = (σ ,L). We pro-
pose to prioritize reported counterexamples to save the effort for
fault inspection and fixing. We believe that the more likely a coun-
terexample is to occur, the more attention it needs. Therefore, we
rank counterexamples according to their probabilities from high to
low.

For a counterexample t =(σ ,L) to occur in the environment con-
structed from L, it requires that the application should make the
same sequence of actions as specified in the rules of σ . This means
that for each rule r in σ , r.condition should be satisfied so that
r.actions can be taken. Thus we first estimate the probability of
satisfaction of r.condition. Suppose that r.condition involves one
variable v affected by uncertainty, and the variable replacing v to
model uncertainty is v′. Let the error range of v be [a,b], and the
value of v in L be d. So the lower bound and upper bound of the
value of v′ are d + a and d + b, respectively. Then the probabil-
ity of r.condition being true true can be calculated according to
the following Equation 1. Function P(v′) is the probability density
function of v′. Function R(v′) is defined as Equation 2. For a given
value of v′, R(v′) returns 1 if r.condition is true, and returns 0 oth-
erwise. For other possible variables involved in r.condition, their
values are fixed using those values in L.

Prob =
∫ d+b

d+a
P(v′)R(v′)dv′ (1)

R(v′) =
{

1, if r.condition = true
0, if r.condition = false (2)

For example, we assume that Rule r0 is the first rule in a coun-
terexample’s path. The rule’s condition disF ≥ 20 involves one
variable disF affected by uncertainty, and we replace disF with
disF ′. The error range of disF is [−6,6], and the value of disF
solved in the counterexample is 17. It means that disF ′’s value
can range from 11 to 23 due to uncertainty. The distribution of
disF ′’s value complies with the Gaussian distribution N(17,22).
So the probability of disF ′ ≥ 20 being true is calculated according
to Equation 1 as

∫ 23
11 P(disF ′)R(disF ′)ddisF ′. Since R(disF ′) = 0

when disF ′ ∈ [11,20), and R(disF ′) = 1 when disF ′ ∈ [20,23], the
above equation is equivalent to

∫ 23
20 P(disF ′)ddisF ′, which results

in ∫ 23

20

1
2
√

2π
e−

(disF ′−17)2

8 ddiF ′ = 0.0655.
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Note that there can be more than one variable affected by uncer-
tainty in a rule’s condition, and there can be more than one rule in
a path. Variables in one rule’s condition may affect each other, and
variables across rules may have effects on each other as well. In
theory, if we want to calculate the probability of satisfaction of all
rules’ conditions, we need to treat all the conditions in a path as
a whole, and perform a multiple integral on all variables that are
affected by uncertainty. As we know, the multiple integral can be
very inefficient when its condition is complex and there are many
variables in the condition. Thus, we give an approximated solution
by treating each variable independently. First, for each rule in a
counterexample, we calculate the probability of satisfaction of the
rule’s condition according to Equation 1. If there are more than one
variable affected by uncertainty in the rule’s condition, a multiple
integral is used. Then, we multiply the probabilities of satisfaction
of each rule’s condition to get an estimated probability of whole
counterexample.

5. VALIDATING OUR APPROACH
In this section, we validate the effectiveness of our approach. We

implemented our approach as a prototype, and the validation was
carried out in the context of our robot-car application case study.
In this study, we are going to answer the following three research
questions:

• RQ1: How does our modeling of environmental constraints
and uncertainty improve the accuracy of verification of self-
adaptive applications?

• RQ2: Can our approach give an accurate estimate of occur-
rence probabilities for its reported counterexamples?

• RQ3: How does the bound of path length configured dur-
ing verification affect the scalability and effectiveness of our
approach?

5.1 Experimental Setup and Design
Self-adaptive applications are different from conventional appli-

cations. They interact with their running environments, and adapt
their behavior based on their sensed environmental changes. To
conduct our evaluation, we need to carefully select our experimen-
tal application subjects. Specifically, both the selected applications
and their running environments need to be manageable, as other-
wise it is hard for us to deploy the applications for experiments.
Guided by this requirement, we selected 12 different robot-car ap-
plications with various sizes as our experimental subjects. These
applications were independently developed by different researchers
and students in our university during the past four years. They
adopt different strategies to control a robot-car to explore unknown
areas based on collected sensory data. These applications have up
to 40 different states and rules.

To answer our research question RQ1, we conducted two experi-
ments. The first experiment studies whether modeling environmen-
tal constraints can improve the verification results by eliminating
false counterexamples. For comparison purposes, we implemented
another approach naive, which ignores environmental constraints
and uncertainty. We applied both our approach and the naive ap-
proach to the 12 robot-car applications, and checked the reported
counterexamples to see how many of them are false counterexam-
ples. Our second experiment studies whether modeling uncertainty
can help improve the verification results. Similar to the first experi-
ment, we implemented an approach ideal, which considers environ-
mental constraints but ignores uncertainty, for comparison. We ap-
plied both our approach and the ideal approach to the 12 robot-car

Table 1: Experimental results without considering environ-
mental constraints

Application Counter-
example

False
positive

False positive
rate

App1 120 94 78.33%
App2 60 42 70.00%
App3 108 90 83.33%
App4 74 53 71.62%
App5 120 102 85.00%
App6 90 75 83.33%
App7 120 90 75.00%
App8 51 39 76.47%
App9 62 48 77.42%
App10 45 32 71.11%
App11 51 43 84.31%
App12 62 48 77.42%

applications, and recorded their reported counterexamples. Then
we ran the 12 robot-car applications in both real deployments (i.e.,
real field study) and simulation to validate these counterexamples.
We then compared true counterexamples reported by the two ap-
proaches to see whether there is any counterexample reported by
actual (i.e., our approach) but not by ideal, and vice versa. In other
words, our goal is to study whether actual can report more coun-
terexamples than ideal.

To answer research question RQ2, for each counterexample, we
need to know its likelihood of occurrence in its corresponding en-
vironment in real cases. The likelihood here serves as a ground
truth to assess our predicted occurrence probability for each coun-
terexample. So we let an application run in the corresponding en-
vironment of every counterexample, and counted the number of
failures encountered by this application with respect to its corre-
sponding counterexample. The experiment was conducted for top
10 reported counterexamples of each application in both field study
and simulation. As we know, to get an accurate probability one has
to collect a fairly large number of samples. The simulation is thus
used to refine our experimental results by providing more sampling
data. Then we checked calculated probabilities of counterexamples
against their observed likelihoods of occurrences, to see how close
they are.

The bound of path length is a parameter in our approach which
can affect the approach’s performance and the number of reported
counterexamples. Besides, since our approach takes one path for
verification at a time, the maximum bound of the path, instead of
the whole size of the ISM, affects the scalability of the approach
virtually. Therefore, we need to investigate how the bound impacts
our approach. In particular, we want to know how our approach
scales and how the number of counterexamples grows as the bound
increases. So, to answer our research question RQ3, we applied
our approach to the 12 robot-car applications to measure the per-
formance of our approach, and recorded the number of reported
counterexamples as the bound increased. The results of all these
experiments are discussed in the next section.

5.2 Experimental Results
In this section, we present experimental results to answer our

earlier raised three research questions.
RQ1. First we examined the effects of modeling environmental

constraints. We implemented the naive approach, and verified the
12 robot-car applications with naive. The bound of path length was
set to 30. Table 1 gives the verification results. Column 2 shows
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Table 2: Comparison of experimental results (reported coun-
terexamples) between actual and ideal

Appli-
cation Actual Ideal More Improvement

App1 86 22 64 290.9%
App2 89 29 60 206.9%
App3 81 20 61 305.0%
App4 112 29 83 286.2%
App5 76 10 66 660.0%
App6 65 16 49 306.3%
App7 103 31 72 232.3%
App8 114 27 87 322.2%
App9 102 34 68 200.0%
App10 124 25 99 396.0%
App11 114 27 87 322.2%
App12 102 34 68 200.0%

the number of reported counterexamples. We examined these coun-
terexamples one by one manually, and found that many of them
violated environmental constraints. For example, in one counterex-
ample, after the car moved forward for a unit distance, the distance
between the car and its front obstacle was bigger than that before
the car took the move. These counterexamples will not happen in
real deployments, and thus are false counterexamples (false posi-
tives). Column 3 shows the number of reported counterexamples
which are false. As we can see from Column 4, the false positive
rate can vary from 70% to over 84%, which indicates the necessity
and importance of considering environmental constraints in the ver-
ification process.

Then we examined the effects of modeling uncertainty by com-
paring the verification results of approach ideal and our approach
actual. We verified the 12 robot-car applications with both ap-
proaches, with the bound of path length set to 30. The results are
shown in Table 2. Column 2 is the number of reported counterex-
amples of actual, and Column 3 is the number of reported coun-
terexamples of ideal. Our approach actual reported clearly more
counterexamples than ideal. Furthermore, by careful examination
we found that all the counterexamples reported by ideal are also re-
ported by actual. In the meantime, we confirmed that all counterex-
amples reported by actual can happen in real environments. Most
confirmations were acquired by field study (more than 85%). The
others (less than 15%) were acquired by simulation, because these
counterexamples have a fairly low probability to occur, and there-
fore were difficult to be witnessed in the field study. The robot-
car and the simulation used to do the field study and simulation
are shown in Figure 4. The experimental results show that our ap-
proach actual reported 200-660% more counterexamples than ap-
proach ideal, which demonstrates that our approach has a better
accuracy (more complete).

Based on the above discussed experimental results, we derive our
answer to research question RQ1: Modeling environmental con-
straints and uncertainty can greatly improve the accuracy of verifi-
cation of self-adaptive applications.

RQ2. We also ranked the counterexamples reported by our ap-
proach from the above experiment with their predicted probabili-
ties. To assess the accuracy of these probabilities, we selected the
top 10 counterexamples from each of the 12 robot-car application
(i.e., 120 counterexamples in total) for further study. Specifically,
for each selected counterexample, we let the concerned application
to run in the environment constructed from this counterexample in
field study for 100 times, and also in simulation for 1,000 times

Figure 4: The robot-car and the simulation used in experi-
ments.
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Figure 5: Comparison of predicted probabilities and experi-
mental probabilities.

(i.e., totally 1,100 runs for each counterexample). For each coun-
terexample, we counted the number of its corresponding failures,
and obtained a likelihood value for the failure’s occurrence. Figure
5 illustrates the results. The horizontal axis represents predicted
probability from our approach, and the vertical axis represents the
likelihood of occurrence observed from experiments. Each coun-
terexample corresponds to two points in the figure: blue points
(solid circle) are for the field study, and red points (solid triangle)
are for the simulation. It is clear that for a counterexample, if its
predicted probability from our approach is close to its likelihood of
occurrence from experiments, its corresponding point in the figure
would be close to the diagonal line. As we can observe from Fig-
ure 5, most of the points are scattered near the diagonal line. From
these results, we derive our answer to research question RQ2: Our
approach can accurately estimate occurrence probabilities for its
reported counterexamples.

RQ3. We ran our approach to verify the robot-car applications
with different bounds of path length. The experimental platform
is a Dell Desktop PC with an Intel Core 2 CPU @2.53GHz and
2GB RAM, running Windows 7. We recorded the spent time and
memory in each run, which are shown in Table 3. As we can ob-
serve from the table, when the bound is set to 50, our approach
spent about 15 minutes and consumed around 250 MB memory
on average. Clearly, given enough time, our approach is able to
handle larger bounds. However, if we focus on counterexamples
with relatively high probabilities, a bound of 50 is already suffi-
cient for the robot-car applications. This is because we observed
that when the bound was set to 50, the increase of the number of
counterexamples with a probability higher than 10−5, which is a
very small likelihood for a counterexample to occur, tends towards
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Table 3: Time and memory costs for verification with different bounds
Appli-
cation 5 10 15 20 25 30 35 40 45 50

App1 4.0s
40MB

6.8s
48MB

10.5s
61MB

19.8s
72MB

38.5s
84MB

72.3s
97MB

109.3s
118MB

196.3s
129MB

310.8s
153MB

500.3s
178MB

App2 2.3s
55MB

3.8s
70MB

7.0s
87MB

12.8s
102MB

22.5s
116MB

41.3s
134MB

75.5s
153MB

147s
168MB

243.8s
186MB

491.3s
204MB

App3 5.0s
31MB

9.3s
44MB

16.5s
52MB

28.8s
63MB

54.0s
75MB

92.8s
81MB

164.3s
89MB

323.5s
97MB

480.8s
108MB

886.3s
124MB

App4 5.8s
44MB

9.5s
51MB

17.5s
59MB

33.0s
68MB

60.8s
81MB

105.3s
103MB

198.8s
117MB

344.8s
132MB

508.0s
155MB

976.3s
196MB

App5 3.8s
58MB

7.0s
65MB

11.5s
83MB

19.5s
94MB

38.5s
112MB

71.5s
137MB

137.0s
162MB

243.8s
194MB

419.5s
205MB

529.3s
217MB

App6 2.3s
38MB

3.5s
45MB

6.8s
53MB

13.0s
59MB

24.3s
64MB

47.0s
71MB

90.8s
78MB

177.0s
84MB

331.0s
96MB

633.3s
113MB

App7 5.3s
41MB

9.0s
53MB

15.3s
64MB

27.5s
71MB

51.5s
79MB

96.3s
94MB

177.5s
124MB

314.3s
167MB

528.8s
195MB

971.8s
211MB

App8 4.3s
47MB

7.5s
55MB

14.5s
67MB

26.0s
84MB

47.3s
95MB

94.8s
110MB

178.0s
135MB

302.3s
157MB

528.3s
198MB

1000.5s
245MB

App9 5.5s
39MB

9.5s
47MB

18.8s
55MB

37.3s
63MB

60.3s
79MB

116.0s
90MB

203.0s
99MB

385.0s
110MB

742.0s
157MB

1012.5s
203MB

App10 3.3s
29MB

6.3s
43MB

11.3s
60MB

22.0s
75MB

39.0s
91MB

69.5s
105MB

130.5s
119MB

248.5s
168MB

472.5s
211MB

810.0s
264MB

App11 4.5s
45MB

8.0s
53MB

15.0s
60MB

24.8s
76MB

45.0s
91MB

92.5s
105MB

180.3s
129MB

313.8s
154MB

525.3s
212MB

998.5s
231MB

App12 5.0s
35MB

8.8s
46MB

17.3s
60MB

33.5s
68MB

59.0s
81MB

113.8s
90MB

208.5s
107MB

382.3s
113MB

692.0s
163MB

1026.5s
217MB
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Figure 6: The growing trend of the number of counterexamples
with the increase of the bound of path length.

stability. Figure 6 illustrates the number of counterexamples with a
probability higher than 10−5 when the bound was set from 5 to 50
(for App 1 to App 6). From these discussions, we can derive our
answer to research question RQ3: Our approach can scale well to
large bounds of path length and it can detect more counterexamples
when the bound increases.

5.3 Threats to Validity
We analyze threats to the validity of our conclusions below.
Threats to construct validity. The main threat to construct va-

lidity for our study is that we may not have run our robot-car appli-
cations adequate times in the field study in order to obtain accurate
likelihoods of occurrence of the counterexamples. To reduce this
threat, we ran each application in simulation for 1,000 times to get
the simulated probabilities as complementary evidence. Another
potential threat to construct validity is the threshold of probability
used to filter out low-probability counterexamples when evaluating
the impact of the bound of path length. Nevertheless, we set the
probability threshold to 10−5, which is an extremely small like-
lihood for a counterexample to occur in real cases. In fact, we
believe developers should focus mainly on counterexamples with
much higher probabilities in a realistic setting.

Threats to internal validity. There are mainly two threats to
internal validity. One is that the given ranges and distributions of
variables for modeling uncertainty may not be realistic. To reduce
this threat, we have conducted a lot of field studies and performed
careful statistical analysis. The other threat to internal validity is
the selected bound of path length. It is possible to find more coun-
terexamples with a larger bound. Nevertheless, according to our
experiments, the number of counterexamples will tend to be stable
as the bound increases. So we selected a proper value for the bound
in experiments.

Threats to external validity. The main threat to external valid-
ity is that our conclusions may not generalize to other self-adaptive
applications. To reduce this threat, we selected 12 different robot-
car self-adaptive applications with various sizes as our experimen-
tal subjects. Meanwhile, we made our best efforts in selecting them
being independently developed by different developers, and vali-
dated by both simulation and field study. The results consistently
support our conclusions. Although we try to make our approach
applicable to other self-adaptive applications, there still is a strong
need for validating our approach with more realistic applications.

6. RELATED WORK
In this section, we discuss selected related work on self-adaptive

applications. Cheng et al. [10] and Lemos et al. [11] presented
a comprehensive and in-depth analysis of the current research sta-
tus including methods and challenges, to which interested readers
can refer. Here we focus on modeling, testing and verifying self-
adaptive applications.

Modeling self-adaptive applications. To model a self-adaptive
application, there are several optional methodologies, such as goal-
oriented or rule-based methodologies. Goal-based modeling offers
a means to identify and visualize different alternatives for satisfy-
ing the overall objectives of a system [9]. The goals here capture
the intentions of a stakeholder on a self-adaptive application and its
execution environment [25], and can be used to model the require-
ments of self-adaptive applications [19]. Rule-based modeling uses
rules explicitly or implicitly to model an application’s expected
reactions to monitored events [31], such as the A-FSM approach
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[29, 34]. There are also other pieces of work related to modeling
self-adaptive applications. Andersson et al. [3] defined four cate-
gories of dimensions for modeling self-adaptive applications: self-
adaptive goals, causes or triggers of self-adaptation, mechanisms
used to adapt, and effects of those mechanisms on applications.
Dobson et al. [13] identified four aspects of self-adaptive applica-
tions around which decisions can be organized: collection, analy-
sis, decision and action. Brun et al. [6] discussed the importance
of making the adaptation control loops explicit during an applica-
tion’s development process, and outlined several types of control
loops that can lead to adaptation.

Verifying and testing self-adaptive applications. Designing
and deploying certifiable verification and validation methods for
self-adaptive applications is one of the major research challenges
for the software engineering community in general and the self-
adaptive applications community in particular [11]. Concerned
properties for self-adaptive applications include safety [13, 40],
liveness and reachability [21, 28, 29, 40], reliability[7, 17], and
stability [4, 28, 29]. In recent years, different methods have been
used in [40, 4, 5] to verify self-adaptive applications. Zhang and
Cheng [40] introduced an approach to creating formal models for
the behavior of self-adaptive applications. They also presented a
process to construct, verify, and validate these models. Bartels et
al. used the process algebra CSP for the specification, verification
and implementation of self-adaptive applications [4]. Camara et al.
[7] proposed an approach for the verification of self-adaptive ap-
plications based on stimulation and probabilistic model-checking.
It stimulates the environment and collects data about how an ap-
plication reacts environmental changes to evaluate whether impor-
tant properties are satisfied within certain confidence levels. Model
checking is also widely used to detect some well-known fault pat-
terns in self-adaptive applications [21, 28, 29].

There are also many studies focusing on testing self-adaptive ap-
plications. Xu et al. [34] used error patterns to dynamically de-
tect and analyze responsible faults. Tse et al. [30] used isotropic
properties of contexts as metamorphic relations for testing context-
sensitive software and presented techniques for generating effec-
tive test cases. Wang et al. [32] proposed to augment existing
test cases to expose faults, by focusing on context switching points
that can affect application adaptations. Besides test case genera-
tion and augmentation, there are also efforts spent on test adequacy
criteria research. For instance, Lu et al. [22] proposed a new set
of coverage criteria to test data flows caused by context uses in
self-adaptive applications. These pieces of work detect faults in
self-adaptive applications, and contribute to their dependability at
design and development phases. Some other studies also tried to
improve self-adaptive applications’ dependability, but from differ-
ent perspectives. For example, related studies [35, 36, 37] detected
and resolved inconsistency in contexts fed to a self-adaptive ap-
plication. Consistent context data is an important prerequisite for
dependable adaptations. Our previous work [38, 39] focused on
improving the dependability of self-adaptive applications by moni-
toring application executions and checking consistency constraints
at runtime. Kulkarni et al. [20] also introduced a runtime error-
handling framework for programming robust self-adaptive applica-
tions by adopting forward recovery strategies. Last but not least,
Ramirez et al. [27] introduced a technique for automatically dis-
covering combinations of environmental conditions that produce
requirement violations and latent behaviors in a self-adaptive ap-
plication.

Managing uncertainty. Uncertainty poses a big threat to cor-
rect and reliable self-adaptations. This problem is gaining increas-
ing attention in recent years. Ramirez et al. [26] reported a tax-

onomy of uncertain factors that can affect self-adaptive applica-
tions. Their work called for a spectrum of research efforts from
requirement specification, application design to runtime support.
There are some studies focusing on how to handle uncertainty at
design time for self-adaptive applications [15, 14, 9]. Esfahani et al.
[15] described an approach to tackling the challenge of uncertainty
by assessing both positive and negative consequences of uncer-
tainty, and proposed a framework for managing uncertainty in self-
adaptive applications [14]. Cheng et al. [9] proposed a requirement
language RELAX to explicitly address uncertainty by enabling en-
gineers to specify uncertainty in application requirements. In their
work, adaptation is achieved by relaxing non-critical requirements.
Ghezzi et al. [18] proposed a framework that supports adaptation
to non-functional manifestations of uncertainty relying on alterna-
tive or optional functionalities. The framework allows engineers to
derive a finite state automaton augmented with probabilities from
an initial model of a self-adaptive application. Famelis et al. [16]
specified uncertainty using annotations with well-defined seman-
tics that transforms an application model into a partial model and
presented an approach to reasoning with such models.

Our work differs from the existing work in three aspects. First,
we explicitly model environmental constraints and uncertainty cau-
sed by unreliable sensing and adaptation for self-adaptive applica-
tions. Second, we present a novel approach, which exploits the
power of SMT solvers, to verifying the correctness of self-adaptive
applications affected by uncertainty. Third, we propose to rank
counterexamples according to their probabilities, which has not yet
been considered in the above literature.

7. CONCLUSION
In this paper, we propose a novel approach to verifying self-

adaptive applications. By explicitly considering the environmental
constraints, the approach avoids reporting false counterexamples
that will not happen in real environments. At the same time, by tak-
ing error ranges of the environment-related variables into account,
the approach can find lots of potential counterexamples (faults) that
would otherwise be overlooked by methods not considering uncer-
tainty in environmental interactions. Our approach also prioritizes
its reported counterexamples according to their occurrence proba-
bilities, whose accuracy has been well validated by both simulated
experiments and field study.

This work can still be improved. For example, we need to vali-
date this work with more real-world applications. In addition to en-
vironmental interactions, we also plan to extend our consideration
of uncertainty to those from other sources, such as requirements
and adaptation decisions.
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